Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopvsca Unicode version

Theorem dvhopvsca 30665
Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dvhfvsca.h  |-  H  =  ( LHyp `  K
)
dvhfvsca.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhfvsca.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhfvsca.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhfvsca.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dvhopvsca  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( R  .x.  <. F ,  X >. )  =  <. ( R `  F ) ,  ( R  o.  X ) >. )

Proof of Theorem dvhopvsca
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( K  e.  V  /\  W  e.  H
) )
2 simpr1 961 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  ->  R  e.  E )
3 simpr2 962 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  ->  F  e.  T )
4 simpr3 963 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  ->  X  e.  E )
5 opelxpi 4721 . . . 4  |-  ( ( F  e.  T  /\  X  e.  E )  -> 
<. F ,  X >.  e.  ( T  X.  E
) )
63, 4, 5syl2anc 642 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  ->  <. F ,  X >.  e.  ( T  X.  E
) )
7 dvhfvsca.h . . . 4  |-  H  =  ( LHyp `  K
)
8 dvhfvsca.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
9 dvhfvsca.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
10 dvhfvsca.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 dvhfvsca.s . . . 4  |-  .x.  =  ( .s `  U )
127, 8, 9, 10, 11dvhvsca 30664 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  <. F ,  X >.  e.  ( T  X.  E ) ) )  ->  ( R  .x.  <. F ,  X >. )  =  <. ( R `  ( 1st ` 
<. F ,  X >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  X >. )
) >. )
131, 2, 6, 12syl12anc 1180 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( R  .x.  <. F ,  X >. )  =  <. ( R `  ( 1st `  <. F ,  X >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  X >. ) ) >. )
14 op1stg 6132 . . . . 5  |-  ( ( F  e.  T  /\  X  e.  E )  ->  ( 1st `  <. F ,  X >. )  =  F )
153, 4, 14syl2anc 642 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( 1st `  <. F ,  X >. )  =  F )
1615fveq2d 5529 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( R `  ( 1st `  <. F ,  X >. ) )  =  ( R `  F ) )
17 op2ndg 6133 . . . . 5  |-  ( ( F  e.  T  /\  X  e.  E )  ->  ( 2nd `  <. F ,  X >. )  =  X )
183, 4, 17syl2anc 642 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( 2nd `  <. F ,  X >. )  =  X )
1918coeq2d 4846 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( R  o.  ( 2nd `  <. F ,  X >. ) )  =  ( R  o.  X ) )
2016, 19opeq12d 3804 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  ->  <. ( R `  ( 1st `  <. F ,  X >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  X >. ) ) >.  =  <. ( R `  F ) ,  ( R  o.  X ) >. )
2113, 20eqtrd 2315 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( R  e.  E  /\  F  e.  T  /\  X  e.  E ) )  -> 
( R  .x.  <. F ,  X >. )  =  <. ( R `  F ) ,  ( R  o.  X ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   <.cop 3643    X. cxp 4687    o. ccom 4693   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   .scvsca 13212   LHypclh 29546   LTrncltrn 29663   TEndoctendo 30314   DVecHcdvh 30641
This theorem is referenced by:  dvhlveclem  30671  dib1dim2  30731  diclspsn  30757  dih1dimatlem  30892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-sca 13224  df-vsca 13225  df-dvech 30642
  Copyright terms: Public domain W3C validator