Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhsca Unicode version

Theorem dvhsca 31894
Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
dvhsca.h  |-  H  =  ( LHyp `  K
)
dvhsca.d  |-  D  =  ( ( EDRing `  K
) `  W )
dvhsca.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhsca.f  |-  F  =  (Scalar `  U )
Assertion
Ref Expression
dvhsca  |-  ( ( K  e.  X  /\  W  e.  H )  ->  F  =  D )

Proof of Theorem dvhsca
Dummy variables  f 
g  h  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhsca.h . . . 4  |-  H  =  ( LHyp `  K
)
2 eqid 2296 . . . 4  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
3 eqid 2296 . . . 4  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
4 dvhsca.d . . . 4  |-  D  =  ( ( EDRing `  K
) `  W )
5 dvhsca.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
61, 2, 3, 4, 5dvhset 31893 . . 3  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) ) ,  g  e.  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) )
76fveq2d 5545 . 2  |-  ( ( K  e.  X  /\  W  e.  H )  ->  (Scalar `  U )  =  (Scalar `  ( { <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) ) ,  g  e.  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
8 dvhsca.f . 2  |-  F  =  (Scalar `  U )
9 fvex 5555 . . . 4  |-  ( (
EDRing `  K ) `  W )  e.  _V
104, 9eqeltri 2366 . . 3  |-  D  e. 
_V
11 eqid 2296 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) ) ,  g  e.  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } )  =  ( { <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) ) ,  g  e.  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } )
1211lmodsca 13291 . . 3  |-  ( D  e.  _V  ->  D  =  (Scalar `  ( { <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) ) ,  g  e.  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
1310, 12ax-mp 8 . 2  |-  D  =  (Scalar `  ( { <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  W
)  X.  ( (
TEndo `  K ) `  W ) ) ,  g  e.  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  W )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) )
147, 8, 133eqtr4g 2353 1  |-  ( ( K  e.  X  /\  W  e.  H )  ->  F  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   {csn 3653   {ctp 3655   <.cop 3656    e. cmpt 4093    X. cxp 4703    o. ccom 4709   ` cfv 5271    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   ndxcnx 13161   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   LHypclh 30795   LTrncltrn 30912   TEndoctendo 31563   EDRingcedring 31564   DVecHcdvh 31890
This theorem is referenced by:  dvhbase  31895  dvhfplusr  31896  dvhfmulr  31897  dvhfvadd  31903  dvhvaddass  31909  tendoinvcl  31916  tendolinv  31917  tendorinv  31918  dvhgrp  31919  dvhlveclem  31920  cdlemn4  32010  hlhilsbase2  32757  hlhilsplus2  32758  hlhilsmul2  32759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-sca 13240  df-vsca 13241  df-dvech 31891
  Copyright terms: Public domain W3C validator