Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddcomN Unicode version

Theorem dvhvaddcomN 31286
Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhvaddcl.h  |-  H  =  ( LHyp `  K
)
dvhvaddcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhvaddcl.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhvaddcl.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhvaddcl.d  |-  D  =  (Scalar `  U )
dvhvaddcl.p  |-  .+^  =  ( +g  `  D )
dvhvaddcl.a  |-  .+  =  ( +g  `  U )
Assertion
Ref Expression
dvhvaddcomN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  ( G 
.+  F ) )

Proof of Theorem dvhvaddcomN
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 xp1st 6149 . . . . 5  |-  ( F  e.  ( T  X.  E )  ->  ( 1st `  F )  e.  T )
32ad2antrl 708 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( 1st `  F
)  e.  T )
4 xp1st 6149 . . . . 5  |-  ( G  e.  ( T  X.  E )  ->  ( 1st `  G )  e.  T )
54ad2antll 709 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( 1st `  G
)  e.  T )
6 dvhvaddcl.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 dvhvaddcl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
86, 7ltrncom 30927 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 1st `  F
)  e.  T  /\  ( 1st `  G )  e.  T )  -> 
( ( 1st `  F
)  o.  ( 1st `  G ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
91, 3, 5, 8syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  F
)  o.  ( 1st `  G ) )  =  ( ( 1st `  G
)  o.  ( 1st `  F ) ) )
10 xp2nd 6150 . . . . . 6  |-  ( F  e.  ( T  X.  E )  ->  ( 2nd `  F )  e.  E )
11 xp2nd 6150 . . . . . 6  |-  ( G  e.  ( T  X.  E )  ->  ( 2nd `  G )  e.  E )
1210, 11anim12i 549 . . . . 5  |-  ( ( F  e.  ( T  X.  E )  /\  G  e.  ( T  X.  E ) )  -> 
( ( 2nd `  F
)  e.  E  /\  ( 2nd `  G )  e.  E ) )
13 dvhvaddcl.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
14 eqid 2283 . . . . . . 7  |-  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  ( b `  c ) ) ) )  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  ( b `  c ) ) ) )
156, 7, 13, 14tendoplcom 30971 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 2nd `  F
)  e.  E  /\  ( 2nd `  G )  e.  E )  -> 
( ( 2nd `  F
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  G
) )  =  ( ( 2nd `  G
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  F
) ) )
16153expb 1152 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( 2nd `  F )  e.  E  /\  ( 2nd `  G
)  e.  E ) )  ->  ( ( 2nd `  F ) ( a  e.  E , 
b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c
)  o.  ( b `
 c ) ) ) ) ( 2nd `  G ) )  =  ( ( 2nd `  G
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  F
) ) )
1712, 16sylan2 460 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  G
) )  =  ( ( 2nd `  G
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  F
) ) )
18 dvhvaddcl.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
19 dvhvaddcl.d . . . . . . 7  |-  D  =  (Scalar `  U )
20 dvhvaddcl.p . . . . . . 7  |-  .+^  =  ( +g  `  D )
216, 7, 13, 18, 19, 14, 20dvhfplusr 31274 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `  c )  o.  ( b `  c ) ) ) ) )
2221adantr 451 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  ->  .+^  =  ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) )
2322oveqd 5875 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  =  ( ( 2nd `  F
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  G
) ) )
2422oveqd 5875 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  G
)  .+^  ( 2nd `  F
) )  =  ( ( 2nd `  G
) ( a  e.  E ,  b  e.  E  |->  ( c  e.  T  |->  ( ( a `
 c )  o.  ( b `  c
) ) ) ) ( 2nd `  F
) ) )
2517, 23, 243eqtr4d 2325 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  F
)  .+^  ( 2nd `  G
) )  =  ( ( 2nd `  G
)  .+^  ( 2nd `  F
) ) )
269, 25opeq12d 3804 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  ->  <. ( ( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >.  =  <. ( ( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  F
) ) >. )
27 dvhvaddcl.a . . 3  |-  .+  =  ( +g  `  U )
286, 7, 13, 18, 19, 27, 20dvhvadd 31282 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  <. (
( 1st `  F
)  o.  ( 1st `  G ) ) ,  ( ( 2nd `  F
)  .+^  ( 2nd `  G
) ) >. )
296, 7, 13, 18, 19, 27, 20dvhvadd 31282 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  ( T  X.  E
)  /\  F  e.  ( T  X.  E
) ) )  -> 
( G  .+  F
)  =  <. (
( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  F
) ) >. )
3029ancom2s 777 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( G  .+  F
)  =  <. (
( 1st `  G
)  o.  ( 1st `  F ) ) ,  ( ( 2nd `  G
)  .+^  ( 2nd `  F
) ) >. )
3126, 28, 303eqtr4d 2325 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  ( T  X.  E
)  /\  G  e.  ( T  X.  E
) ) )  -> 
( F  .+  G
)  =  ( G 
.+  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643    e. cmpt 4077    X. cxp 4687    o. ccom 4693   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121   +g cplusg 13208  Scalarcsca 13211   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941   DVecHcdvh 31268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944  df-edring 30946  df-dvech 31269
  Copyright terms: Public domain W3C validator