Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvscacbv Structured version   Unicode version

Theorem dvhvscacbv 31896
 Description: Change bound variables to isolate them later. (Contributed by NM, 20-Nov-2013.)
Hypothesis
Ref Expression
dvhvscaval.s
Assertion
Ref Expression
dvhvscacbv
Distinct variable groups:   ,,,,   ,,,,
Allowed substitution hints:   (,,,)

Proof of Theorem dvhvscacbv
StepHypRef Expression
1 dvhvscaval.s . 2
2 fveq1 5727 . . . 4
3 coeq1 5030 . . . 4
42, 3opeq12d 3992 . . 3
5 fveq2 5728 . . . . 5
65fveq2d 5732 . . . 4
7 fveq2 5728 . . . . 5
87coeq2d 5035 . . . 4
96, 8opeq12d 3992 . . 3
104, 9cbvmpt2v 6152 . 2
111, 10eqtri 2456 1
 Colors of variables: wff set class Syntax hints:   wceq 1652  cop 3817   cxp 4876   ccom 4882  cfv 5454   cmpt2 6083  c1st 6347  c2nd 6348 This theorem is referenced by:  dvhvscaval  31897 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-co 4887  df-iota 5418  df-fv 5462  df-oprab 6085  df-mpt2 6086
 Copyright terms: Public domain W3C validator