MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvidlem Unicode version

Theorem dvidlem 19670
Description: Lemma for dvid 19672 and dvconst 19671. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvidlem.1  |-  ( ph  ->  F : CC --> CC )
dvidlem.2  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z  =/=  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
dvidlem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidlem  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Distinct variable groups:    x, z, B    x, F, z    ph, x, z

Proof of Theorem dvidlem
StepHypRef Expression
1 dvfcn 19663 . . . 4  |-  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC
2 ssid 3311 . . . . . . . 8  |-  CC  C_  CC
32a1i 11 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
4 dvidlem.1 . . . . . . 7  |-  ( ph  ->  F : CC --> CC )
53, 4, 3dvbss 19656 . . . . . 6  |-  ( ph  ->  dom  ( CC  _D  F )  C_  CC )
6 reldv 19625 . . . . . . . . 9  |-  Rel  ( CC  _D  F )
7 simpr 448 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
8 eqid 2388 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
98cnfldtop 18690 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
108cnfldtopon 18689 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1110toponunii 16921 . . . . . . . . . . . . 13  |-  CC  =  U. ( TopOpen ` fld )
1211ntrtop 17058 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( int `  ( TopOpen
` fld
) ) `  CC )  =  CC )
139, 12ax-mp 8 . . . . . . . . . . 11  |-  ( ( int `  ( TopOpen ` fld )
) `  CC )  =  CC
147, 13syl6eleqr 2479 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  ( ( int `  ( TopOpen
` fld
) ) `  CC ) )
15 limcresi 19640 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  CC  |->  B )  |`  ( CC  \  { x } ) ) lim CC  x )
16 dvidlem.3 . . . . . . . . . . . . . . 15  |-  B  e.  CC
1716a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  CC )
182a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  CC )  ->  CC  C_  CC )
19 cncfmptc 18813 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CC  /\  CC  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  CC  |->  B )  e.  ( CC
-cn-> CC ) )
2017, 18, 18, 19syl3anc 1184 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  CC  |->  B )  e.  ( CC -cn-> CC ) )
21 eqidd 2389 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  B  =  B )
2220, 7, 21cnmptlimc 19645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e.  CC  |->  B ) lim CC  x ) )
2315, 22sseldi 3290 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( ( z  e.  CC  |->  B )  |`  ( CC  \  {
x } ) ) lim
CC  x ) )
24 eldifsn 3871 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { x } )  <-> 
( z  e.  CC  /\  z  =/=  x ) )
25 dvidlem.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z  =/=  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
26253exp2 1171 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  CC  ->  ( z  e.  CC  ->  ( z  =/=  x  ->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
2726imp43 579 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  CC )  /\  (
z  e.  CC  /\  z  =/=  x ) )  ->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) )  =  B )
2824, 27sylan2b 462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  CC )  /\  z  e.  ( CC  \  {
x } ) )  ->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) )  =  B )
2928mpteq2dva 4237 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  ( CC  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )  =  ( z  e.  ( CC  \  { x } ) 
|->  B ) )
30 difss 3418 . . . . . . . . . . . . . 14  |-  ( CC 
\  { x }
)  C_  CC
31 resmpt 5132 . . . . . . . . . . . . . 14  |-  ( ( CC  \  { x } )  C_  CC  ->  ( ( z  e.  CC  |->  B )  |`  ( CC  \  { x } ) )  =  ( z  e.  ( CC  \  { x } )  |->  B ) )
3230, 31ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  |->  B )  |`  ( CC  \  { x } ) )  =  ( z  e.  ( CC  \  { x } ) 
|->  B )
3329, 32syl6eqr 2438 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  CC )  ->  ( z  e.  ( CC  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )  =  ( ( z  e.  CC  |->  B )  |`  ( CC  \  { x } ) ) )
3433oveq1d 6036 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( z  e.  ( CC 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  CC  |->  B )  |`  ( CC  \  { x } ) ) lim CC  x ) )
3523, 34eleqtrrd 2465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  ( ( z  e.  ( CC  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )
3611restid 13589 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
379, 36ax-mp 8 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
3837eqcomi 2392 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
39 eqid 2388 . . . . . . . . . . 11  |-  ( z  e.  ( CC  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )  =  ( z  e.  ( CC  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )
404adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  CC )  ->  F : CC
--> CC )
4138, 8, 39, 18, 40, 18eldv 19653 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  CC )  ->  ( x ( CC  _D  F
) B  <->  ( x  e.  ( ( int `  ( TopOpen
` fld
) ) `  CC )  /\  B  e.  ( ( z  e.  ( CC  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
4214, 35, 41mpbir2and 889 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  x ( CC  _D  F ) B )
43 releldm 5043 . . . . . . . . 9  |-  ( ( Rel  ( CC  _D  F )  /\  x
( CC  _D  F
) B )  ->  x  e.  dom  ( CC 
_D  F ) )
446, 42, 43sylancr 645 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  x  e. 
dom  ( CC  _D  F ) )
4544ex 424 . . . . . . 7  |-  ( ph  ->  ( x  e.  CC  ->  x  e.  dom  ( CC  _D  F ) ) )
4645ssrdv 3298 . . . . . 6  |-  ( ph  ->  CC  C_  dom  ( CC 
_D  F ) )
475, 46eqssd 3309 . . . . 5  |-  ( ph  ->  dom  ( CC  _D  F )  =  CC )
4847feq2d 5522 . . . 4  |-  ( ph  ->  ( ( CC  _D  F ) : dom  ( CC  _D  F
) --> CC  <->  ( CC  _D  F ) : CC --> CC ) )
491, 48mpbii 203 . . 3  |-  ( ph  ->  ( CC  _D  F
) : CC --> CC )
50 ffn 5532 . . 3  |-  ( ( CC  _D  F ) : CC --> CC  ->  ( CC  _D  F )  Fn  CC )
5149, 50syl 16 . 2  |-  ( ph  ->  ( CC  _D  F
)  Fn  CC )
52 fnconstg 5572 . . 3  |-  ( B  e.  CC  ->  ( CC  X.  { B }
)  Fn  CC )
5316, 52mp1i 12 . 2  |-  ( ph  ->  ( CC  X.  { B } )  Fn  CC )
54 ffun 5534 . . . . . 6  |-  ( ( CC  _D  F ) : dom  ( CC 
_D  F ) --> CC 
->  Fun  ( CC  _D  F ) )
551, 54mp1i 12 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  Fun  ( CC  _D  F ) )
56 funbrfvb 5709 . . . . 5  |-  ( ( Fun  ( CC  _D  F )  /\  x  e.  dom  ( CC  _D  F ) )  -> 
( ( ( CC 
_D  F ) `  x )  =  B  <-> 
x ( CC  _D  F ) B ) )
5755, 44, 56syl2anc 643 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( ( CC  _D  F
) `  x )  =  B  <->  x ( CC 
_D  F ) B ) )
5842, 57mpbird 224 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  B )
5916a1i 11 . . . 4  |-  ( ph  ->  B  e.  CC )
60 fvconst2g 5885 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x )  =  B )
6159, 60sylan 458 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  X.  { B } ) `  x
)  =  B )
6258, 61eqtr4d 2423 . 2  |-  ( (
ph  /\  x  e.  CC )  ->  ( ( CC  _D  F ) `
 x )  =  ( ( CC  X.  { B } ) `  x ) )
6351, 53, 62eqfnfvd 5770 1  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551    \ cdif 3261    C_ wss 3264   {csn 3758   class class class wbr 4154    e. cmpt 4208    X. cxp 4817   dom cdm 4819    |` cres 4821   Rel wrel 4824   Fun wfun 5389    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   CCcc 8922    - cmin 9224    / cdiv 9610   ↾t crest 13576   TopOpenctopn 13577  ℂfldccnfld 16627   Topctop 16882   intcnt 17005   -cn->ccncf 18778   lim CC climc 19617    _D cdv 19618
This theorem is referenced by:  dvconst  19671  dvid  19672
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-icc 10856  df-fz 10977  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-plusg 13470  df-mulr 13471  df-starv 13472  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-rest 13578  df-topn 13579  df-topgen 13595  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-cncf 18780  df-limc 19621  df-dv 19622
  Copyright terms: Public domain W3C validator