MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvivth Structured version   Unicode version

Theorem dvivth 19899
Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 19360 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvivth.1  |-  ( ph  ->  M  e.  ( A (,) B ) )
dvivth.2  |-  ( ph  ->  N  e.  ( A (,) B ) )
dvivth.3  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> RR ) )
dvivth.4  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
Assertion
Ref Expression
dvivth  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  C_  ran  ( RR 
_D  F ) )

Proof of Theorem dvivth
Dummy variables  x  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 10977 . . . 4  |-  ( A (,) B )  C_  RR
2 dvivth.1 . . . 4  |-  ( ph  ->  M  e.  ( A (,) B ) )
31, 2sseldi 3348 . . 3  |-  ( ph  ->  M  e.  RR )
4 dvivth.2 . . . 4  |-  ( ph  ->  N  e.  ( A (,) B ) )
51, 4sseldi 3348 . . 3  |-  ( ph  ->  N  e.  RR )
63, 5lttri4d 9219 . 2  |-  ( ph  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
72adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  M  e.  ( A (,) B ) )
84adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  N  e.  ( A (,) B ) )
9 dvivth.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> RR ) )
10 cncff 18928 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( ( A (,) B ) -cn-> RR )  ->  F :
( A (,) B
) --> RR )
119, 10syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : ( A (,) B ) --> RR )
1211ffvelrnda 5873 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( A (,) B ) )  ->  ( F `  w )  e.  RR )
1312renegcld 9469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( A (,) B ) )  ->  -u ( F `
 w )  e.  RR )
14 eqid 2438 . . . . . . . . . . . . 13  |-  ( w  e.  ( A (,) B )  |->  -u ( F `  w )
)  =  ( w  e.  ( A (,) B )  |->  -u ( F `  w )
)
1513, 14fmptd 5896 . . . . . . . . . . . 12  |-  ( ph  ->  ( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) ) : ( A (,) B
) --> RR )
16 ax-resscn 9052 . . . . . . . . . . . . 13  |-  RR  C_  CC
17 ssid 3369 . . . . . . . . . . . . . . . 16  |-  CC  C_  CC
18 cncfss 18934 . . . . . . . . . . . . . . . 16  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A (,) B
) -cn-> RR )  C_  (
( A (,) B
) -cn-> CC ) )
1916, 17, 18mp2an 655 . . . . . . . . . . . . . . 15  |-  ( ( A (,) B )
-cn-> RR )  C_  (
( A (,) B
) -cn-> CC )
2019, 9sseldi 3348 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
2114negfcncf 18954 . . . . . . . . . . . . . 14  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  ( w  e.  ( A (,) B
)  |->  -u ( F `  w ) )  e.  ( ( A (,) B ) -cn-> CC ) )
2220, 21syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) )  e.  ( ( A (,) B ) -cn-> CC ) )
23 cncffvrn 18933 . . . . . . . . . . . . 13  |-  ( ( RR  C_  CC  /\  (
w  e.  ( A (,) B )  |->  -u ( F `  w ) )  e.  ( ( A (,) B )
-cn-> CC ) )  -> 
( ( w  e.  ( A (,) B
)  |->  -u ( F `  w ) )  e.  ( ( A (,) B ) -cn-> RR )  <-> 
( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) ) : ( A (,) B
) --> RR ) )
2416, 22, 23sylancr 646 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( w  e.  ( A (,) B
)  |->  -u ( F `  w ) )  e.  ( ( A (,) B ) -cn-> RR )  <-> 
( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) ) : ( A (,) B
) --> RR ) )
2515, 24mpbird 225 . . . . . . . . . . 11  |-  ( ph  ->  ( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) )  e.  ( ( A (,) B ) -cn-> RR ) )
2625adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) )  e.  ( ( A (,) B ) -cn-> RR ) )
27 reex 9086 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
2827prid1 3914 . . . . . . . . . . . . . 14  |-  RR  e.  { RR ,  CC }
2928a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  RR  e.  { RR ,  CC } )
3011adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  F : ( A (,) B ) --> RR )
3130ffvelrnda 5873 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  -> 
( F `  w
)  e.  RR )
3231recnd 9119 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  -> 
( F `  w
)  e.  CC )
33 fvex 5745 . . . . . . . . . . . . . 14  |-  ( ( RR  _D  F ) `
 w )  e. 
_V
3433a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  -> 
( ( RR  _D  F ) `  w
)  e.  _V )
3530feqmptd 5782 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  F  =  ( w  e.  ( A (,) B
)  |->  ( F `  w ) ) )
3635oveq2d 6100 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( RR  _D  F
)  =  ( RR 
_D  ( w  e.  ( A (,) B
)  |->  ( F `  w ) ) ) )
37 dvfre 19842 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : ( A (,) B ) --> RR 
/\  ( A (,) B )  C_  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR )
3811, 1, 37sylancl 645 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
39 dvivth.4 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
4039feq2d 5584 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : ( A (,) B ) --> RR ) )
4138, 40mpbid 203 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> RR )
4241adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( RR  _D  F
) : ( A (,) B ) --> RR )
4342feqmptd 5782 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( RR  _D  F
)  =  ( w  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 w ) ) )
4436, 43eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( RR  _D  (
w  e.  ( A (,) B )  |->  ( F `  w ) ) )  =  ( w  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  w )
) )
4529, 32, 34, 44dvmptneg 19857 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( RR  _D  (
w  e.  ( A (,) B )  |->  -u ( F `  w ) ) )  =  ( w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) ) )
4645dmeqd 5075 . . . . . . . . . . 11  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  dom  ( RR  _D  (
w  e.  ( A (,) B )  |->  -u ( F `  w ) ) )  =  dom  ( w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) ) )
47 dmmptg 5370 . . . . . . . . . . . 12  |-  ( A. w  e.  ( A (,) B ) -u (
( RR  _D  F
) `  w )  e.  _V  ->  dom  ( w  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  w )
)  =  ( A (,) B ) )
48 negex 9309 . . . . . . . . . . . . 13  |-  -u (
( RR  _D  F
) `  w )  e.  _V
4948a1i 11 . . . . . . . . . . . 12  |-  ( w  e.  ( A (,) B )  ->  -u (
( RR  _D  F
) `  w )  e.  _V )
5047, 49mprg 2777 . . . . . . . . . . 11  |-  dom  (
w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) )  =  ( A (,) B )
5146, 50syl6eq 2486 . . . . . . . . . 10  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  dom  ( RR  _D  (
w  e.  ( A (,) B )  |->  -u ( F `  w ) ) )  =  ( A (,) B ) )
52 simprl 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  M  <  N )
53 simprr 735 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  x  e.  ( (
( RR  _D  F
) `  M ) [,] ( ( RR  _D  F ) `  N
) ) )
5441, 2ffvelrnd 5874 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( RR  _D  F ) `  M
)  e.  RR )
5554adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( RR  _D  F ) `  M
)  e.  RR )
564, 39eleqtrrd 2515 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  dom  ( RR  _D  F ) )
5738, 56ffvelrnd 5874 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( RR  _D  F ) `  N
)  e.  RR )
5857adantr 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( RR  _D  F ) `  N
)  e.  RR )
59 iccssre 10997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( RR  _D  F ) `  M
)  e.  RR  /\  ( ( RR  _D  F ) `  N
)  e.  RR )  ->  ( ( ( RR  _D  F ) `
 M ) [,] ( ( RR  _D  F ) `  N
) )  C_  RR )
6054, 57, 59syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  C_  RR )
6160adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  C_  RR )
6261, 53sseldd 3351 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  x  e.  RR )
63 iccneg 11023 . . . . . . . . . . . . 13  |-  ( ( ( ( RR  _D  F ) `  M
)  e.  RR  /\  ( ( RR  _D  F ) `  N
)  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( ( ( RR  _D  F ) `  M
) [,] ( ( RR  _D  F ) `
 N ) )  <->  -u x  e.  ( -u ( ( RR  _D  F ) `  N
) [,] -u (
( RR  _D  F
) `  M )
) ) )
6455, 58, 62, 63syl3anc 1185 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( x  e.  ( ( ( RR  _D  F ) `  M
) [,] ( ( RR  _D  F ) `
 N ) )  <->  -u x  e.  ( -u ( ( RR  _D  F ) `  N
) [,] -u (
( RR  _D  F
) `  M )
) ) )
6553, 64mpbid 203 . . . . . . . . . . 11  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  -u x  e.  ( -u ( ( RR  _D  F ) `  N
) [,] -u (
( RR  _D  F
) `  M )
) )
6645fveq1d 5733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( RR  _D  ( w  e.  ( A (,) B )  |->  -u ( F `  w ) ) ) `  N
)  =  ( ( w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) ) `  N
) )
67 fveq2 5731 . . . . . . . . . . . . . . . 16  |-  ( w  =  N  ->  (
( RR  _D  F
) `  w )  =  ( ( RR 
_D  F ) `  N ) )
6867negeqd 9305 . . . . . . . . . . . . . . 15  |-  ( w  =  N  ->  -u (
( RR  _D  F
) `  w )  =  -u ( ( RR 
_D  F ) `  N ) )
69 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  w )
)  =  ( w  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  w )
)
70 negex 9309 . . . . . . . . . . . . . . 15  |-  -u (
( RR  _D  F
) `  N )  e.  _V
7168, 69, 70fvmpt 5809 . . . . . . . . . . . . . 14  |-  ( N  e.  ( A (,) B )  ->  (
( w  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  w ) ) `  N )  =  -u ( ( RR  _D  F ) `  N
) )
728, 71syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( w  e.  ( A (,) B
)  |->  -u ( ( RR 
_D  F ) `  w ) ) `  N )  =  -u ( ( RR  _D  F ) `  N
) )
7366, 72eqtrd 2470 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( RR  _D  ( w  e.  ( A (,) B )  |->  -u ( F `  w ) ) ) `  N
)  =  -u (
( RR  _D  F
) `  N )
)
7445fveq1d 5733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( RR  _D  ( w  e.  ( A (,) B )  |->  -u ( F `  w ) ) ) `  M
)  =  ( ( w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) ) `  M
) )
75 fveq2 5731 . . . . . . . . . . . . . . . 16  |-  ( w  =  M  ->  (
( RR  _D  F
) `  w )  =  ( ( RR 
_D  F ) `  M ) )
7675negeqd 9305 . . . . . . . . . . . . . . 15  |-  ( w  =  M  ->  -u (
( RR  _D  F
) `  w )  =  -u ( ( RR 
_D  F ) `  M ) )
77 negex 9309 . . . . . . . . . . . . . . 15  |-  -u (
( RR  _D  F
) `  M )  e.  _V
7876, 69, 77fvmpt 5809 . . . . . . . . . . . . . 14  |-  ( M  e.  ( A (,) B )  ->  (
( w  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  w ) ) `  M )  =  -u ( ( RR  _D  F ) `  M
) )
797, 78syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( w  e.  ( A (,) B
)  |->  -u ( ( RR 
_D  F ) `  w ) ) `  M )  =  -u ( ( RR  _D  F ) `  M
) )
8074, 79eqtrd 2470 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( RR  _D  ( w  e.  ( A (,) B )  |->  -u ( F `  w ) ) ) `  M
)  =  -u (
( RR  _D  F
) `  M )
)
8173, 80oveq12d 6102 . . . . . . . . . . 11  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( ( ( RR 
_D  ( w  e.  ( A (,) B
)  |->  -u ( F `  w ) ) ) `
 N ) [,] ( ( RR  _D  ( w  e.  ( A (,) B )  |->  -u ( F `  w ) ) ) `  M
) )  =  (
-u ( ( RR 
_D  F ) `  N ) [,] -u (
( RR  _D  F
) `  M )
) )
8265, 81eleqtrrd 2515 . . . . . . . . . 10  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  -u x  e.  ( ( ( RR  _D  (
w  e.  ( A (,) B )  |->  -u ( F `  w ) ) ) `  N
) [,] ( ( RR  _D  ( w  e.  ( A (,) B )  |->  -u ( F `  w )
) ) `  M
) ) )
83 eqid 2438 . . . . . . . . . 10  |-  ( y  e.  ( A (,) B )  |->  ( ( ( w  e.  ( A (,) B ) 
|->  -u ( F `  w ) ) `  y )  -  ( -u x  x.  y ) ) )  =  ( y  e.  ( A (,) B )  |->  ( ( ( w  e.  ( A (,) B
)  |->  -u ( F `  w ) ) `  y )  -  ( -u x  x.  y ) ) )
847, 8, 26, 51, 52, 82, 83dvivthlem2 19898 . . . . . . . . 9  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  -u x  e.  ran  ( RR  _D  ( w  e.  ( A (,) B
)  |->  -u ( F `  w ) ) ) )
8545rneqd 5100 . . . . . . . . 9  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  ran  ( RR  _D  (
w  e.  ( A (,) B )  |->  -u ( F `  w ) ) )  =  ran  ( w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) ) )
8684, 85eleqtrd 2514 . . . . . . . 8  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  -u x  e.  ran  (
w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) ) )
87 negex 9309 . . . . . . . . 9  |-  -u x  e.  _V
8869elrnmpt 5120 . . . . . . . . 9  |-  ( -u x  e.  _V  ->  (
-u x  e.  ran  ( w  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  w
) )  <->  E. w  e.  ( A (,) B
) -u x  =  -u ( ( RR  _D  F ) `  w
) ) )
8987, 88ax-mp 5 . . . . . . . 8  |-  ( -u x  e.  ran  ( w  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  w )
)  <->  E. w  e.  ( A (,) B )
-u x  =  -u ( ( RR  _D  F ) `  w
) )
9086, 89sylib 190 . . . . . . 7  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  E. w  e.  ( A (,) B ) -u x  =  -u ( ( RR  _D  F ) `
 w ) )
9162recnd 9119 . . . . . . . . . . 11  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  x  e.  CC )
9291adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  ->  x  e.  CC )
9329, 32, 34, 44dvmptcl 19850 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  -> 
( ( RR  _D  F ) `  w
)  e.  CC )
9492, 93neg11ad 9412 . . . . . . . . 9  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  -> 
( -u x  =  -u ( ( RR  _D  F ) `  w
)  <->  x  =  (
( RR  _D  F
) `  w )
) )
95 eqcom 2440 . . . . . . . . 9  |-  ( x  =  ( ( RR 
_D  F ) `  w )  <->  ( ( RR  _D  F ) `  w )  =  x )
9694, 95syl6bb 254 . . . . . . . 8  |-  ( ( ( ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  /\  w  e.  ( A (,) B ) )  -> 
( -u x  =  -u ( ( RR  _D  F ) `  w
)  <->  ( ( RR 
_D  F ) `  w )  =  x ) )
9796rexbidva 2724 . . . . . . 7  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( E. w  e.  ( A (,) B
) -u x  =  -u ( ( RR  _D  F ) `  w
)  <->  E. w  e.  ( A (,) B ) ( ( RR  _D  F ) `  w
)  =  x ) )
9890, 97mpbid 203 . . . . . 6  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  E. w  e.  ( A (,) B ) ( ( RR  _D  F
) `  w )  =  x )
99 ffn 5594 . . . . . . . 8  |-  ( ( RR  _D  F ) : ( A (,) B ) --> RR  ->  ( RR  _D  F )  Fn  ( A (,) B ) )
10042, 99syl 16 . . . . . . 7  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( RR  _D  F
)  Fn  ( A (,) B ) )
101 fvelrnb 5777 . . . . . . 7  |-  ( ( RR  _D  F )  Fn  ( A (,) B )  ->  (
x  e.  ran  ( RR  _D  F )  <->  E. w  e.  ( A (,) B
) ( ( RR 
_D  F ) `  w )  =  x ) )
102100, 101syl 16 . . . . . 6  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  -> 
( x  e.  ran  ( RR  _D  F
)  <->  E. w  e.  ( A (,) B ) ( ( RR  _D  F ) `  w
)  =  x ) )
10398, 102mpbird 225 . . . . 5  |-  ( (
ph  /\  ( M  <  N  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  x  e.  ran  ( RR 
_D  F ) )
104103expr 600 . . . 4  |-  ( (
ph  /\  M  <  N )  ->  ( x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  ->  x  e.  ran  ( RR  _D  F
) ) )
105104ssrdv 3356 . . 3  |-  ( (
ph  /\  M  <  N )  ->  ( (
( RR  _D  F
) `  M ) [,] ( ( RR  _D  F ) `  N
) )  C_  ran  ( RR  _D  F
) )
106 fveq2 5731 . . . . . 6  |-  ( M  =  N  ->  (
( RR  _D  F
) `  M )  =  ( ( RR 
_D  F ) `  N ) )
107106oveq1d 6099 . . . . 5  |-  ( M  =  N  ->  (
( ( RR  _D  F ) `  M
) [,] ( ( RR  _D  F ) `
 N ) )  =  ( ( ( RR  _D  F ) `
 N ) [,] ( ( RR  _D  F ) `  N
) ) )
10857rexrd 9139 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F ) `  N
)  e.  RR* )
109 iccid 10966 . . . . . 6  |-  ( ( ( RR  _D  F
) `  N )  e.  RR*  ->  ( (
( RR  _D  F
) `  N ) [,] ( ( RR  _D  F ) `  N
) )  =  {
( ( RR  _D  F ) `  N
) } )
110108, 109syl 16 . . . . 5  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  N ) [,] (
( RR  _D  F
) `  N )
)  =  { ( ( RR  _D  F
) `  N ) } )
111107, 110sylan9eqr 2492 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  (
( ( RR  _D  F ) `  M
) [,] ( ( RR  _D  F ) `
 N ) )  =  { ( ( RR  _D  F ) `
 N ) } )
112 ffn 5594 . . . . . . . 8  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> RR 
->  ( RR  _D  F
)  Fn  dom  ( RR  _D  F ) )
11338, 112syl 16 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  Fn  dom  ( RR  _D  F ) )
114 fnfvelrn 5870 . . . . . . 7  |-  ( ( ( RR  _D  F
)  Fn  dom  ( RR  _D  F )  /\  N  e.  dom  ( RR 
_D  F ) )  ->  ( ( RR 
_D  F ) `  N )  e.  ran  ( RR  _D  F
) )
115113, 56, 114syl2anc 644 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F ) `  N
)  e.  ran  ( RR  _D  F ) )
116115snssd 3945 . . . . 5  |-  ( ph  ->  { ( ( RR 
_D  F ) `  N ) }  C_  ran  ( RR  _D  F
) )
117116adantr 453 . . . 4  |-  ( (
ph  /\  M  =  N )  ->  { ( ( RR  _D  F
) `  N ) }  C_  ran  ( RR 
_D  F ) )
118111, 117eqsstrd 3384 . . 3  |-  ( (
ph  /\  M  =  N )  ->  (
( ( RR  _D  F ) `  M
) [,] ( ( RR  _D  F ) `
 N ) ) 
C_  ran  ( RR  _D  F ) )
1194adantr 453 . . . . . 6  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  N  e.  ( A (,) B ) )
1202adantr 453 . . . . . 6  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  M  e.  ( A (,) B ) )
1219adantr 453 . . . . . 6  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  F  e.  ( ( A (,) B ) -cn-> RR ) )
12239adantr 453 . . . . . 6  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  dom  ( RR  _D  F
)  =  ( A (,) B ) )
123 simprl 734 . . . . . 6  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  N  <  M )
124 simprr 735 . . . . . 6  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  x  e.  ( (
( RR  _D  F
) `  M ) [,] ( ( RR  _D  F ) `  N
) ) )
125 eqid 2438 . . . . . 6  |-  ( y  e.  ( A (,) B )  |->  ( ( F `  y )  -  ( x  x.  y ) ) )  =  ( y  e.  ( A (,) B
)  |->  ( ( F `
 y )  -  ( x  x.  y
) ) )
126119, 120, 121, 122, 123, 124, 125dvivthlem2 19898 . . . . 5  |-  ( (
ph  /\  ( N  <  M  /\  x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
) ) )  ->  x  e.  ran  ( RR 
_D  F ) )
127126expr 600 . . . 4  |-  ( (
ph  /\  N  <  M )  ->  ( x  e.  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  ->  x  e.  ran  ( RR  _D  F
) ) )
128127ssrdv 3356 . . 3  |-  ( (
ph  /\  N  <  M )  ->  ( (
( RR  _D  F
) `  M ) [,] ( ( RR  _D  F ) `  N
) )  C_  ran  ( RR  _D  F
) )
129105, 118, 1283jaodan 1251 . 2  |-  ( (
ph  /\  ( M  <  N  \/  M  =  N  \/  N  < 
M ) )  -> 
( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  C_  ran  ( RR 
_D  F ) )
1306, 129mpdan 651 1  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  M ) [,] (
( RR  _D  F
) `  N )
)  C_  ran  ( RR 
_D  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    \/ w3o 936    = wceq 1653    e. wcel 1726   E.wrex 2708   _Vcvv 2958    C_ wss 3322   {csn 3816   {cpr 3817   class class class wbr 4215    e. cmpt 4269   dom cdm 4881   ran crn 4882    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994    x. cmul 9000   RR*cxr 9124    < clt 9125    - cmin 9296   -ucneg 9297   (,)cioo 10921   [,]cicc 10924   -cn->ccncf 18911    _D cdv 19755
This theorem is referenced by:  dvne0  19900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-cmp 17455  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759
  Copyright terms: Public domain W3C validator