MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Unicode version

Theorem dvle 19354
Description: If  A
( x ) ,  C ( x ) are differentiable functions and  A `  <_  C `
, then for  x  <_  y,  A ( y )  -  A ( x )  <_  C
( y )  -  C ( x ). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m  |-  ( ph  ->  M  e.  RR )
dvle.n  |-  ( ph  ->  N  e.  RR )
dvle.a  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
dvle.b  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
dvle.c  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> RR ) )
dvle.d  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) )  =  ( x  e.  ( M (,) N )  |->  D ) )
dvle.f  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  <_  D )
dvle.x  |-  ( ph  ->  X  e.  ( M [,] N ) )
dvle.y  |-  ( ph  ->  Y  e.  ( M [,] N ) )
dvle.l  |-  ( ph  ->  X  <_  Y )
dvle.p  |-  ( x  =  X  ->  A  =  P )
dvle.q  |-  ( x  =  X  ->  C  =  Q )
dvle.r  |-  ( x  =  Y  ->  A  =  R )
dvle.s  |-  ( x  =  Y  ->  C  =  S )
Assertion
Ref Expression
dvle  |-  ( ph  ->  ( R  -  P
)  <_  ( S  -  Q ) )
Distinct variable groups:    x, M    x, N    x, P    x, Q    x, R    x, S    x, X    ph, x    x, Y
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.y . . 3  |-  ( ph  ->  Y  e.  ( M [,] N ) )
2 dvle.a . . . . 5  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A )  e.  ( ( M [,] N
) -cn-> RR ) )
3 cncff 18397 . . . . 5  |-  ( ( x  e.  ( M [,] N )  |->  A )  e.  ( ( M [,] N )
-cn-> RR )  ->  (
x  e.  ( M [,] N )  |->  A ) : ( M [,] N ) --> RR )
42, 3syl 15 . . . 4  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  A ) : ( M [,] N ) --> RR )
5 eqid 2283 . . . . 5  |-  ( x  e.  ( M [,] N )  |->  A )  =  ( x  e.  ( M [,] N
)  |->  A )
65fmpt 5681 . . . 4  |-  ( A. x  e.  ( M [,] N ) A  e.  RR  <->  ( x  e.  ( M [,] N
)  |->  A ) : ( M [,] N
) --> RR )
74, 6sylibr 203 . . 3  |-  ( ph  ->  A. x  e.  ( M [,] N ) A  e.  RR )
8 dvle.r . . . . 5  |-  ( x  =  Y  ->  A  =  R )
98eleq1d 2349 . . . 4  |-  ( x  =  Y  ->  ( A  e.  RR  <->  R  e.  RR ) )
109rspcv 2880 . . 3  |-  ( Y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  R  e.  RR ) )
111, 7, 10sylc 56 . 2  |-  ( ph  ->  R  e.  RR )
12 dvle.c . . . . . 6  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  C )  e.  ( ( M [,] N
) -cn-> RR ) )
13 cncff 18397 . . . . . 6  |-  ( ( x  e.  ( M [,] N )  |->  C )  e.  ( ( M [,] N )
-cn-> RR )  ->  (
x  e.  ( M [,] N )  |->  C ) : ( M [,] N ) --> RR )
1412, 13syl 15 . . . . 5  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  C ) : ( M [,] N ) --> RR )
15 eqid 2283 . . . . . 6  |-  ( x  e.  ( M [,] N )  |->  C )  =  ( x  e.  ( M [,] N
)  |->  C )
1615fmpt 5681 . . . . 5  |-  ( A. x  e.  ( M [,] N ) C  e.  RR  <->  ( x  e.  ( M [,] N
)  |->  C ) : ( M [,] N
) --> RR )
1714, 16sylibr 203 . . . 4  |-  ( ph  ->  A. x  e.  ( M [,] N ) C  e.  RR )
18 dvle.s . . . . . 6  |-  ( x  =  Y  ->  C  =  S )
1918eleq1d 2349 . . . . 5  |-  ( x  =  Y  ->  ( C  e.  RR  <->  S  e.  RR ) )
2019rspcv 2880 . . . 4  |-  ( Y  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) C  e.  RR  ->  S  e.  RR ) )
211, 17, 20sylc 56 . . 3  |-  ( ph  ->  S  e.  RR )
22 dvle.x . . . 4  |-  ( ph  ->  X  e.  ( M [,] N ) )
23 dvle.q . . . . . 6  |-  ( x  =  X  ->  C  =  Q )
2423eleq1d 2349 . . . . 5  |-  ( x  =  X  ->  ( C  e.  RR  <->  Q  e.  RR ) )
2524rspcv 2880 . . . 4  |-  ( X  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) C  e.  RR  ->  Q  e.  RR ) )
2622, 17, 25sylc 56 . . 3  |-  ( ph  ->  Q  e.  RR )
2721, 26resubcld 9211 . 2  |-  ( ph  ->  ( S  -  Q
)  e.  RR )
28 dvle.p . . . . 5  |-  ( x  =  X  ->  A  =  P )
2928eleq1d 2349 . . . 4  |-  ( x  =  X  ->  ( A  e.  RR  <->  P  e.  RR ) )
3029rspcv 2880 . . 3  |-  ( X  e.  ( M [,] N )  ->  ( A. x  e.  ( M [,] N ) A  e.  RR  ->  P  e.  RR ) )
3122, 7, 30sylc 56 . 2  |-  ( ph  ->  P  e.  RR )
3211recnd 8861 . . . . 5  |-  ( ph  ->  R  e.  CC )
3326recnd 8861 . . . . . 6  |-  ( ph  ->  Q  e.  CC )
3421recnd 8861 . . . . . 6  |-  ( ph  ->  S  e.  CC )
3533, 34subcld 9157 . . . . 5  |-  ( ph  ->  ( Q  -  S
)  e.  CC )
3632, 35addcomd 9014 . . . 4  |-  ( ph  ->  ( R  +  ( Q  -  S ) )  =  ( ( Q  -  S )  +  R ) )
3732, 34, 33subsub2d 9186 . . . 4  |-  ( ph  ->  ( R  -  ( S  -  Q )
)  =  ( R  +  ( Q  -  S ) ) )
3833, 34, 32subsubd 9185 . . . 4  |-  ( ph  ->  ( Q  -  ( S  -  R )
)  =  ( ( Q  -  S )  +  R ) )
3936, 37, 383eqtr4d 2325 . . 3  |-  ( ph  ->  ( R  -  ( S  -  Q )
)  =  ( Q  -  ( S  -  R ) ) )
4021, 11resubcld 9211 . . . 4  |-  ( ph  ->  ( S  -  R
)  e.  RR )
41 dvle.m . . . . . 6  |-  ( ph  ->  M  e.  RR )
42 dvle.n . . . . . 6  |-  ( ph  ->  N  e.  RR )
43 eqid 2283 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4443subcn 18370 . . . . . . 7  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
45 ax-resscn 8794 . . . . . . 7  |-  RR  C_  CC
46 resubcl 9111 . . . . . . 7  |-  ( ( C  e.  RR  /\  A  e.  RR )  ->  ( C  -  A
)  e.  RR )
4743, 44, 12, 2, 45, 46cncfmpt2ss 18419 . . . . . 6  |-  ( ph  ->  ( x  e.  ( M [,] N ) 
|->  ( C  -  A
) )  e.  ( ( M [,] N
) -cn-> RR ) )
48 ioossicc 10735 . . . . . . . . . . . . . . . . 17  |-  ( M (,) N )  C_  ( M [,] N )
4948sseli 3176 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( M (,) N )  ->  x  e.  ( M [,] N
) )
5017r19.21bi 2641 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  C  e.  RR )
5149, 50sylan2 460 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  C  e.  RR )
52 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M (,) N )  |->  C )  =  ( x  e.  ( M (,) N
)  |->  C )
5351, 52fmptd 5684 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> RR )
54 ioossre 10712 . . . . . . . . . . . . . 14  |-  ( M (,) N )  C_  RR
55 dvfre 19300 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( M (,) N ) 
|->  C ) : ( M (,) N ) --> RR  /\  ( M (,) N )  C_  RR )  ->  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  C ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  C ) ) --> RR )
5653, 54, 55sylancl 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) ) --> RR )
57 dvle.d . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) )  =  ( x  e.  ( M (,) N )  |->  D ) )
5857dmeqd 4881 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  C ) )  =  dom  ( x  e.  ( M (,) N )  |->  D ) )
59 dvle.f . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  <_  D )
60 lerel 8889 . . . . . . . . . . . . . . . . . . 19  |-  Rel  <_
6160brrelex2i 4730 . . . . . . . . . . . . . . . . . 18  |-  ( B  <_  D  ->  D  e.  _V )
6259, 61syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  D  e.  _V )
6362ralrimiva 2626 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  ( M (,) N ) D  e.  _V )
64 dmmptg 5170 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  ( M (,) N ) D  e. 
_V  ->  dom  ( x  e.  ( M (,) N
)  |->  D )  =  ( M (,) N
) )
6563, 64syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  ( M (,) N
)  |->  D )  =  ( M (,) N
) )
6658, 65eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  C ) )  =  ( M (,) N ) )
6757, 66feq12d 5381 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( M (,) N )  |->  C ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  C ) ) --> RR  <->  ( x  e.  ( M (,) N
)  |->  D ) : ( M (,) N
) --> RR ) )
6856, 67mpbid 201 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  D ) : ( M (,) N ) --> RR )
69 eqid 2283 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  |->  D )  =  ( x  e.  ( M (,) N
)  |->  D )
7069fmpt 5681 . . . . . . . . . . . 12  |-  ( A. x  e.  ( M (,) N ) D  e.  RR  <->  ( x  e.  ( M (,) N
)  |->  D ) : ( M (,) N
) --> RR )
7168, 70sylibr 203 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( M (,) N ) D  e.  RR )
7271r19.21bi 2641 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  D  e.  RR )
737r19.21bi 2641 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  RR )
7449, 73sylan2 460 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  A  e.  RR )
75 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( M (,) N )  |->  A )  =  ( x  e.  ( M (,) N
)  |->  A )
7674, 75fmptd 5684 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  A ) : ( M (,) N ) --> RR )
77 dvfre 19300 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ( M (,) N ) 
|->  A ) : ( M (,) N ) --> RR  /\  ( M (,) N )  C_  RR )  ->  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) : dom  ( RR 
_D  ( x  e.  ( M (,) N
)  |->  A ) ) --> RR )
7876, 54, 77sylancl 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) --> RR )
79 dvle.b . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) )  =  ( x  e.  ( M (,) N )  |->  B ) )
8079dmeqd 4881 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  dom  ( x  e.  ( M (,) N )  |->  B ) )
8160brrelexi 4729 . . . . . . . . . . . . . . . . . 18  |-  ( B  <_  D  ->  B  e.  _V )
8259, 81syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  _V )
8382ralrimiva 2626 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  ( M (,) N ) B  e.  _V )
84 dmmptg 5170 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  ( M (,) N ) B  e. 
_V  ->  dom  ( x  e.  ( M (,) N
)  |->  B )  =  ( M (,) N
) )
8583, 84syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( x  e.  ( M (,) N
)  |->  B )  =  ( M (,) N
) )
8680, 85eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) )  =  ( M (,) N ) )
8779, 86feq12d 5381 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( M (,) N )  |->  A ) ) : dom  ( RR  _D  (
x  e.  ( M (,) N )  |->  A ) ) --> RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR ) )
8878, 87mpbid 201 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  B ) : ( M (,) N ) --> RR )
89 eqid 2283 . . . . . . . . . . . . 13  |-  ( x  e.  ( M (,) N )  |->  B )  =  ( x  e.  ( M (,) N
)  |->  B )
9089fmpt 5681 . . . . . . . . . . . 12  |-  ( A. x  e.  ( M (,) N ) B  e.  RR  <->  ( x  e.  ( M (,) N
)  |->  B ) : ( M (,) N
) --> RR )
9188, 90sylibr 203 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( M (,) N ) B  e.  RR )
9291r19.21bi 2641 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  B  e.  RR )
9372, 92resubcld 9211 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  ( D  -  B )  e.  RR )
9472, 92subge0d 9362 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  ( 0  <_  ( D  -  B )  <->  B  <_  D ) )
9559, 94mpbird 223 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  0  <_  ( D  -  B ) )
96 elrege0 10746 . . . . . . . . 9  |-  ( ( D  -  B )  e.  ( 0 [,) 
+oo )  <->  ( ( D  -  B )  e.  RR  /\  0  <_ 
( D  -  B
) ) )
9793, 95, 96sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  ( D  -  B )  e.  ( 0 [,)  +oo )
)
98 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( M (,) N )  |->  ( D  -  B ) )  =  ( x  e.  ( M (,) N
)  |->  ( D  -  B ) )
9997, 98fmptd 5684 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( M (,) N ) 
|->  ( D  -  B
) ) : ( M (,) N ) --> ( 0 [,)  +oo ) )
10045a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
101 iccssre 10731 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M [,] N
)  C_  RR )
10241, 42, 101syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( M [,] N
)  C_  RR )
10350, 73resubcld 9211 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  ( C  -  A )  e.  RR )
104103recnd 8861 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  ( C  -  A )  e.  CC )
10543tgioo2 18309 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
106 iccntr 18326 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
10741, 42, 106syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( M [,] N ) )  =  ( M (,) N
) )
108100, 102, 104, 105, 43, 107dvmptntr 19320 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M [,] N )  |->  ( C  -  A ) ) )  =  ( RR  _D  ( x  e.  ( M (,) N )  |->  ( C  -  A ) ) ) )
109 reex 8828 . . . . . . . . . . . 12  |-  RR  e.  _V
110109prid1 3734 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
111110a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
11250recnd 8861 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  C  e.  CC )
11349, 112sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  C  e.  CC )
11473recnd 8861 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  A  e.  CC )
11549, 114sylan2 460 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( M (,) N ) )  ->  A  e.  CC )
116111, 113, 62, 57, 115, 82, 79dvmptsub 19316 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M (,) N )  |->  ( C  -  A ) ) )  =  ( x  e.  ( M (,) N )  |->  ( D  -  B ) ) )
117108, 116eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M [,] N )  |->  ( C  -  A ) ) )  =  ( x  e.  ( M (,) N )  |->  ( D  -  B ) ) )
118117feq1d 5379 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( M [,] N )  |->  ( C  -  A ) ) ) : ( M (,) N ) --> ( 0 [,)  +oo ) 
<->  ( x  e.  ( M (,) N ) 
|->  ( D  -  B
) ) : ( M (,) N ) --> ( 0 [,)  +oo ) ) )
11999, 118mpbird 223 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
x  e.  ( M [,] N )  |->  ( C  -  A ) ) ) : ( M (,) N ) --> ( 0 [,)  +oo ) )
120 dvle.l . . . . . 6  |-  ( ph  ->  X  <_  Y )
12141, 42, 47, 119, 22, 1, 120dvge0 19353 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( M [,] N
)  |->  ( C  -  A ) ) `  X )  <_  (
( x  e.  ( M [,] N ) 
|->  ( C  -  A
) ) `  Y
) )
12223, 28oveq12d 5876 . . . . . . 7  |-  ( x  =  X  ->  ( C  -  A )  =  ( Q  -  P ) )
123 eqid 2283 . . . . . . 7  |-  ( x  e.  ( M [,] N )  |->  ( C  -  A ) )  =  ( x  e.  ( M [,] N
)  |->  ( C  -  A ) )
124 ovex 5883 . . . . . . 7  |-  ( C  -  A )  e. 
_V
125122, 123, 124fvmpt3i 5605 . . . . . 6  |-  ( X  e.  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( C  -  A
) ) `  X
)  =  ( Q  -  P ) )
12622, 125syl 15 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( M [,] N
)  |->  ( C  -  A ) ) `  X )  =  ( Q  -  P ) )
12718, 8oveq12d 5876 . . . . . . 7  |-  ( x  =  Y  ->  ( C  -  A )  =  ( S  -  R ) )
128127, 123, 124fvmpt3i 5605 . . . . . 6  |-  ( Y  e.  ( M [,] N )  ->  (
( x  e.  ( M [,] N ) 
|->  ( C  -  A
) ) `  Y
)  =  ( S  -  R ) )
1291, 128syl 15 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( M [,] N
)  |->  ( C  -  A ) ) `  Y )  =  ( S  -  R ) )
130121, 126, 1293brtr3d 4052 . . . 4  |-  ( ph  ->  ( Q  -  P
)  <_  ( S  -  R ) )
13126, 31, 40, 130subled 9375 . . 3  |-  ( ph  ->  ( Q  -  ( S  -  R )
)  <_  P )
13239, 131eqbrtrd 4043 . 2  |-  ( ph  ->  ( R  -  ( S  -  Q )
)  <_  P )
13311, 27, 31, 132subled 9375 1  |-  ( ph  ->  ( R  -  P
)  <_  ( S  -  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   {cpr 3641   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    +oocpnf 8864    <_ cle 8868    - cmin 9037   (,)cioo 10656   [,)cico 10658   [,]cicc 10659   TopOpenctopn 13326   topGenctg 13342  ℂfldccnfld 16377   intcnt 16754   -cn->ccncf 18380    _D cdv 19213
This theorem is referenced by:  dvfsumle  19368  dvfsumlem2  19374  loglesqr  20098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator