MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Unicode version

Theorem dvlipcn 19357
Description: A complex function with derivative bounded by  M on an open ball is Lipschitz continuous with Lipchitz constant equal to  M. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x  |-  ( ph  ->  X  C_  CC )
dvlipcn.f  |-  ( ph  ->  F : X --> CC )
dvlipcn.a  |-  ( ph  ->  A  e.  CC )
dvlipcn.r  |-  ( ph  ->  R  e.  RR* )
dvlipcn.b  |-  B  =  ( A ( ball `  ( abs  o.  -  ) ) R )
dvlipcn.d  |-  ( ph  ->  B  C_  dom  ( CC 
_D  F ) )
dvlipcn.m  |-  ( ph  ->  M  e.  RR )
dvlipcn.l  |-  ( (
ph  /\  x  e.  B )  ->  ( abs `  ( ( CC 
_D  F ) `  x ) )  <_  M )
Assertion
Ref Expression
dvlipcn  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( F `  Y
)  -  ( F `
 Z ) ) )  <_  ( M  x.  ( abs `  ( Y  -  Z )
) ) )
Distinct variable groups:    x, B    x, F    x, M    ph, x
Allowed substitution hints:    A( x)    R( x)    X( x)    Y( x)    Z( x)

Proof of Theorem dvlipcn
Dummy variables  t 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 10771 . . 3  |-  1  e.  ( 0 [,] 1
)
2 0elunit 10770 . . 3  |-  0  e.  ( 0 [,] 1
)
3 0re 8854 . . . . 5  |-  0  e.  RR
43a1i 10 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
0  e.  RR )
5 1re 8853 . . . . 5  |-  1  e.  RR
65a1i 10 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
1  e.  RR )
7 dvlipcn.d . . . . . . . . . . . . . 14  |-  ( ph  ->  B  C_  dom  ( CC 
_D  F ) )
8 ssid 3210 . . . . . . . . . . . . . . . 16  |-  CC  C_  CC
98a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  CC  C_  CC )
10 dvlipcn.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : X --> CC )
11 dvlipcn.x . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  C_  CC )
129, 10, 11dvbss 19267 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( CC  _D  F )  C_  X
)
137, 12sstrd 3202 . . . . . . . . . . . . 13  |-  ( ph  ->  B  C_  X )
1413, 11sstrd 3202 . . . . . . . . . . . 12  |-  ( ph  ->  B  C_  CC )
1514adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  B  C_  CC )
16 simprl 732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Y  e.  B )
1715, 16sseldd 3194 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Y  e.  CC )
1817adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Y  e.  CC )
19 iccssre 10747 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
203, 5, 19mp2an 653 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  C_  RR
21 ax-resscn 8810 . . . . . . . . . . 11  |-  RR  C_  CC
2220, 21sstri 3201 . . . . . . . . . 10  |-  ( 0 [,] 1 )  C_  CC
23 simpr 447 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  t  e.  ( 0 [,] 1
) )
2422, 23sseldi 3191 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  t  e.  CC )
2518, 24mulcomd 8872 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  ( Y  x.  t )  =  ( t  x.  Y ) )
26 simprr 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Z  e.  B )
2715, 26sseldd 3194 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Z  e.  CC )
2827adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Z  e.  CC )
29 iirev 18443 . . . . . . . . . . 11  |-  ( t  e.  ( 0 [,] 1 )  ->  (
1  -  t )  e.  ( 0 [,] 1 ) )
3029adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
1  -  t )  e.  ( 0 [,] 1 ) )
3122, 30sseldi 3191 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
1  -  t )  e.  CC )
3228, 31mulcomd 8872 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  ( Z  x.  ( 1  -  t ) )  =  ( ( 1  -  t )  x.  Z ) )
3325, 32oveq12d 5892 . . . . . . 7  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  =  ( ( t  x.  Y )  +  ( ( 1  -  t )  x.  Z
) ) )
34 dvlipcn.a . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3534ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  A  e.  CC )
36 dvlipcn.r . . . . . . . . 9  |-  ( ph  ->  R  e.  RR* )
3736ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  R  e.  RR* )
3816adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Y  e.  B )
3926adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Z  e.  B )
40 dvlipcn.b . . . . . . . . 9  |-  B  =  ( A ( ball `  ( abs  o.  -  ) ) R )
4140blcvx 18320 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  R  e.  RR* )  /\  ( Y  e.  B  /\  Z  e.  B  /\  t  e.  (
0 [,] 1 ) ) )  ->  (
( t  x.  Y
)  +  ( ( 1  -  t )  x.  Z ) )  e.  B )
4235, 37, 38, 39, 23, 41syl23anc 1189 . . . . . . 7  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( t  x.  Y
)  +  ( ( 1  -  t )  x.  Z ) )  e.  B )
4333, 42eqeltrd 2370 . . . . . 6  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  B )
44 eqidd 2297 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  =  ( t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )
45 fssres 5424 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  B  C_  X )  -> 
( F  |`  B ) : B --> CC )
4610, 13, 45syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  B ) : B --> CC )
4746feqmptd 5591 . . . . . . . 8  |-  ( ph  ->  ( F  |`  B )  =  ( z  e.  B  |->  ( ( F  |`  B ) `  z
) ) )
48 fvres 5558 . . . . . . . . 9  |-  ( z  e.  B  ->  (
( F  |`  B ) `
 z )  =  ( F `  z
) )
4948mpteq2ia 4118 . . . . . . . 8  |-  ( z  e.  B  |->  ( ( F  |`  B ) `  z ) )  =  ( z  e.  B  |->  ( F `  z
) )
5047, 49syl6eq 2344 . . . . . . 7  |-  ( ph  ->  ( F  |`  B )  =  ( z  e.  B  |->  ( F `  z ) ) )
5150adantr 451 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F  |`  B )  =  ( z  e.  B  |->  ( F `  z ) ) )
52 fveq2 5541 . . . . . 6  |-  ( z  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  ( F `  z )  =  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
5343, 44, 51, 52fmptco 5707 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( F  |`  B )  o.  (
t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  =  ( t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )
54 eqid 2296 . . . . . . . 8  |-  ( t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  =  ( t  e.  ( 0 [,] 1
)  |->  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )
5543, 54fmptd 5700 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) : ( 0 [,] 1 ) --> B )
56 eqid 2296 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5756addcn 18385 . . . . . . . . . 10  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
5857a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  +  e.  ( (
( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5956mulcn 18387 . . . . . . . . . . 11  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
6059a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  x.  e.  ( ( (
TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
61 cncfmptc 18431 . . . . . . . . . . . 12  |-  ( ( Y  e.  CC  /\  ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  Y )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6222, 8, 61mp3an23 1269 . . . . . . . . . . 11  |-  ( Y  e.  CC  ->  (
t  e.  ( 0 [,] 1 )  |->  Y )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6317, 62syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  Y )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
64 cncfmptid 18432 . . . . . . . . . . . 12  |-  ( ( ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6522, 8, 64mp2an 653 . . . . . . . . . . 11  |-  ( t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( 0 [,] 1 ) -cn-> CC )
6665a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  t )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
6756, 60, 63, 66cncfmpt2f 18434 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( Y  x.  t
) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
68 cncfmptc 18431 . . . . . . . . . . . 12  |-  ( ( Z  e.  CC  /\  ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  Z )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6922, 8, 68mp3an23 1269 . . . . . . . . . . 11  |-  ( Z  e.  CC  ->  (
t  e.  ( 0 [,] 1 )  |->  Z )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
7027, 69syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  Z )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7156subcn 18386 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7271a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  -  e.  ( (
( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
73 ax-1cn 8811 . . . . . . . . . . . . 13  |-  1  e.  CC
74 cncfmptc 18431 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  1 )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
7573, 22, 8, 74mp3an 1277 . . . . . . . . . . . 12  |-  ( t  e.  ( 0 [,] 1 )  |->  1 )  e.  ( ( 0 [,] 1 ) -cn-> CC )
7675a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  1 )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7756, 72, 76, 66cncfmpt2f 18434 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( 1  -  t
) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7856, 60, 70, 77cncfmpt2f 18434 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( Z  x.  (
1  -  t ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7956, 58, 67, 78cncfmpt2f 18434 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
80 cncffvrn 18418 . . . . . . . 8  |-  ( ( B  C_  CC  /\  (
t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  e.  ( ( 0 [,] 1 ) -cn-> B )  <-> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) : ( 0 [,] 1 ) --> B ) )
8115, 79, 80syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  e.  ( ( 0 [,] 1 ) -cn-> B )  <-> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) : ( 0 [,] 1 ) --> B ) )
8255, 81mpbird 223 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> B ) )
838a1i 10 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  CC  C_  CC )
8446adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F  |`  B ) : B --> CC )
8556cnfldtop 18309 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
8656cnfldtopon 18308 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8786toponunii 16686 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
8887restid 13354 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
8985, 88ax-mp 8 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
9089eqcomi 2300 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
9156, 90dvres 19277 . . . . . . . . . . . 12  |-  ( ( ( CC  C_  CC  /\  F : X --> CC )  /\  ( X  C_  CC  /\  B  C_  CC ) )  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) ) )
929, 10, 11, 14, 91syl22anc 1183 . . . . . . . . . . 11  |-  ( ph  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  ( ( int `  ( TopOpen
` fld
) ) `  B
) ) )
93 cnxmet 18298 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
9493a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
9556cnfldtopn 18307 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
9695blopn 18062 . . . . . . . . . . . . . . 15  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  A  e.  CC  /\  R  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) R )  e.  (
TopOpen ` fld ) )
9794, 34, 36, 96syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A ( ball `  ( abs  o.  -  ) ) R )  e.  ( TopOpen ` fld ) )
9840, 97syl5eqel 2380 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  ( TopOpen ` fld )
)
99 isopn3i 16835 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  B  e.  ( TopOpen ` fld )
)  ->  ( ( int `  ( TopOpen ` fld ) ) `  B
)  =  B )
10085, 98, 99sylancr 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( int `  ( TopOpen
` fld
) ) `  B
)  =  B )
101100reseq2d 4971 . . . . . . . . . . 11  |-  ( ph  ->  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) )  =  ( ( CC  _D  F
)  |`  B ) )
10292, 101eqtrd 2328 . . . . . . . . . 10  |-  ( ph  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  B ) )
103102dmeqd 4897 . . . . . . . . 9  |-  ( ph  ->  dom  ( CC  _D  ( F  |`  B ) )  =  dom  (
( CC  _D  F
)  |`  B ) )
104 dmres 4992 . . . . . . . . . 10  |-  dom  (
( CC  _D  F
)  |`  B )  =  ( B  i^i  dom  ( CC  _D  F
) )
105 df-ss 3179 . . . . . . . . . . 11  |-  ( B 
C_  dom  ( CC  _D  F )  <->  ( B  i^i  dom  ( CC  _D  F ) )  =  B )
1067, 105sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  dom  ( CC  _D  F
) )  =  B )
107104, 106syl5eq 2340 . . . . . . . . 9  |-  ( ph  ->  dom  ( ( CC 
_D  F )  |`  B )  =  B )
108103, 107eqtrd 2328 . . . . . . . 8  |-  ( ph  ->  dom  ( CC  _D  ( F  |`  B ) )  =  B )
109108adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( CC  _D  ( F  |`  B ) )  =  B )
110 dvcn 19286 . . . . . . 7  |-  ( ( ( CC  C_  CC  /\  ( F  |`  B ) : B --> CC  /\  B  C_  CC )  /\  dom  ( CC  _D  ( F  |`  B ) )  =  B )  -> 
( F  |`  B )  e.  ( B -cn-> CC ) )
11183, 84, 15, 109, 110syl31anc 1185 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F  |`  B )  e.  ( B -cn-> CC ) )
11282, 111cncfco 18427 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( F  |`  B )  o.  (
t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
11353, 112eqeltrrd 2371 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
11421a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  RR  C_  CC )
11520a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0 [,] 1
)  C_  RR )
11610ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  F : X --> CC )
11713ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  B  C_  X )
118117, 43sseldd 3194 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  X )
119 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) )  e.  X )  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  CC )
120116, 118, 119syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  e.  CC )
12156tgioo2 18325 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
122 iccntr 18342 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] 1 ) )  =  ( 0 (,) 1
) )
1234, 5, 122sylancl 643 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] 1 ) )  =  ( 0 (,) 1
) )
124114, 115, 120, 121, 56, 123dvmptntr 19336 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( RR  _D  ( t  e.  ( 0 (,) 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) ) )
125 reex 8844 . . . . . . . . . 10  |-  RR  e.  _V
126125prid1 3747 . . . . . . . . 9  |-  RR  e.  { RR ,  CC }
127126a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  RR  e.  { RR ,  CC } )
128 cnex 8834 . . . . . . . . . 10  |-  CC  e.  _V
129128prid2 3748 . . . . . . . . 9  |-  CC  e.  { RR ,  CC }
130129a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  CC  e.  { RR ,  CC } )
131 ioossicc 10751 . . . . . . . . . 10  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
132131sseli 3189 . . . . . . . . 9  |-  ( t  e.  ( 0 (,) 1 )  ->  t  e.  ( 0 [,] 1
) )
133132, 43sylan2 460 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  B )
13417, 27subcld 9173 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  -  Z
)  e.  CC )
135134adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( Y  -  Z )  e.  CC )
13613adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  B  C_  X )
137136sselda 3193 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  B )  ->  z  e.  X )
13810adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  F : X --> CC )
139 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  z  e.  X )  ->  ( F `  z
)  e.  CC )
140138, 139sylan 457 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  X )  ->  ( F `  z )  e.  CC )
141137, 140syldan 456 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
142 fvex 5555 . . . . . . . . 9  |-  ( ( CC  _D  F ) `
 z )  e. 
_V
143142a1i 10 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  B )  ->  (
( CC  _D  F
) `  z )  e.  _V )
14417adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  Y  e.  CC )
145132, 24sylan2 460 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  t  e.  CC )
146144, 145mulcld 8871 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( Y  x.  t )  e.  CC )
1475a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
148 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  t  e.  RR )
149148recnd 8877 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  t  e.  CC )
1505a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  1  e.  RR )
151127dvmptid 19322 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  RR  |->  t ) )  =  ( t  e.  RR  |->  1 ) )
152 ioossre 10728 . . . . . . . . . . . . . 14  |-  ( 0 (,) 1 )  C_  RR
153152a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0 (,) 1
)  C_  RR )
154 iooretop 18291 . . . . . . . . . . . . . 14  |-  ( 0 (,) 1 )  e.  ( topGen `  ran  (,) )
155154a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0 (,) 1
)  e.  ( topGen ` 
ran  (,) ) )
156127, 149, 150, 151, 153, 121, 56, 155dvmptres 19328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  t ) )  =  ( t  e.  ( 0 (,) 1 )  |->  1 ) )
157127, 145, 147, 156, 17dvmptcmul 19329 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Y  x.  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Y  x.  1 ) ) )
15817mulid1d 8868 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  x.  1 )  =  Y )
159158mpteq2dv 4123 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 (,) 1 ) 
|->  ( Y  x.  1 ) )  =  ( t  e.  ( 0 (,) 1 )  |->  Y ) )
160157, 159eqtrd 2328 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Y  x.  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  Y ) )
16127adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  Z  e.  CC )
162132, 31sylan2 460 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
1  -  t )  e.  CC )
163161, 162mulcld 8871 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( Z  x.  ( 1  -  t ) )  e.  CC )
164 negex 9066 . . . . . . . . . . 11  |-  -u Z  e.  _V
165164a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u Z  e.  _V )
166 negex 9066 . . . . . . . . . . . . 13  |-  -u 1  e.  _V
167166a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u 1  e.  _V )
16873a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  1  e.  CC )
1693a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  0  e.  RR )
17073a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  1  e.  CC )
1713a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  0  e.  RR )
17273a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
1  e.  CC )
173127, 172dvmptc 19323 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  RR  |->  1 ) )  =  ( t  e.  RR  |->  0 ) )
174127, 170, 171, 173, 153, 121, 56, 155dvmptres 19328 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  1 ) )  =  ( t  e.  ( 0 (,) 1 )  |->  0 ) )
175127, 168, 169, 174, 145, 147, 156dvmptsub 19332 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( 1  -  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( 0  -  1 ) ) )
176 df-neg 9056 . . . . . . . . . . . . . 14  |-  -u 1  =  ( 0  -  1 )
177176mpteq2i 4119 . . . . . . . . . . . . 13  |-  ( t  e.  ( 0 (,) 1 )  |->  -u 1
)  =  ( t  e.  ( 0 (,) 1 )  |->  ( 0  -  1 ) )
178175, 177syl6eqr 2346 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( 1  -  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  -u
1 ) )
179127, 162, 167, 178, 27dvmptcmul 19329 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Z  x.  ( 1  -  t ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Z  x.  -u 1
) ) )
180 neg1cn 9829 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
181 mulcom 8839 . . . . . . . . . . . . . 14  |-  ( ( Z  e.  CC  /\  -u 1  e.  CC )  ->  ( Z  x.  -u 1 )  =  (
-u 1  x.  Z
) )
18227, 180, 181sylancl 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  -u 1
)  =  ( -u
1  x.  Z ) )
18327mulm1d 9247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( -u 1  x.  Z
)  =  -u Z
)
184182, 183eqtrd 2328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  -u 1
)  =  -u Z
)
185184mpteq2dv 4123 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 (,) 1 ) 
|->  ( Z  x.  -u 1
) )  =  ( t  e.  ( 0 (,) 1 )  |->  -u Z ) )
186179, 185eqtrd 2328 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Z  x.  ( 1  -  t ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  -u Z ) )
187127, 146, 144, 160, 163, 165, 186dvmptadd 19325 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Y  +  -u Z
) ) )
18817, 27negsubd 9179 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  +  -u Z )  =  ( Y  -  Z ) )
189188mpteq2dv 4123 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 (,) 1 ) 
|->  ( Y  +  -u Z ) )  =  ( t  e.  ( 0 (,) 1 ) 
|->  ( Y  -  Z
) ) )
190187, 189eqtrd 2328 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Y  -  Z ) ) )
19111adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  X  C_  CC )
19283, 138, 191, 15, 91syl22anc 1183 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  ( ( int `  ( TopOpen
` fld
) ) `  B
) ) )
193100adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( int `  ( TopOpen
` fld
) ) `  B
)  =  B )
194193reseq2d 4971 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) )  =  ( ( CC  _D  F
)  |`  B ) )
195192, 194eqtrd 2328 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  B ) )
19651oveq2d 5890 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) )  =  ( CC  _D  ( z  e.  B  |->  ( F `  z
) ) ) )
197 dvfcn 19274 . . . . . . . . . . . . 13  |-  ( CC 
_D  ( F  |`  B ) ) : dom  ( CC  _D  ( F  |`  B ) ) --> CC
198109feq2d 5396 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  ( F  |`  B ) ) : dom  ( CC  _D  ( F  |`  B ) ) --> CC  <->  ( CC  _D  ( F  |`  B ) ) : B --> CC ) )
199197, 198mpbii 202 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) ) : B --> CC )
200195feq1d 5395 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  ( F  |`  B ) ) : B --> CC  <->  ( ( CC  _D  F )  |`  B ) : B --> CC ) )
201199, 200mpbid 201 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  B ) : B --> CC )
202201feqmptd 5591 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  B )  =  ( z  e.  B  |->  ( ( ( CC  _D  F )  |`  B ) `  z
) ) )
203 fvres 5558 . . . . . . . . . . 11  |-  ( z  e.  B  ->  (
( ( CC  _D  F )  |`  B ) `
 z )  =  ( ( CC  _D  F ) `  z
) )
204203mpteq2ia 4118 . . . . . . . . . 10  |-  ( z  e.  B  |->  ( ( ( CC  _D  F
)  |`  B ) `  z ) )  =  ( z  e.  B  |->  ( ( CC  _D  F ) `  z
) )
205202, 204syl6eq 2344 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  B )  =  ( z  e.  B  |->  ( ( CC 
_D  F ) `  z ) ) )
206195, 196, 2053eqtr3d 2336 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  (
z  e.  B  |->  ( F `  z ) ) )  =  ( z  e.  B  |->  ( ( CC  _D  F
) `  z )
) )
207 fveq2 5541 . . . . . . . 8  |-  ( z  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  (
( CC  _D  F
) `  z )  =  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
208127, 130, 133, 135, 141, 143, 190, 206, 52, 207dvmptco 19337 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) ) )
209124, 208eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) ) )
210209dmeqd 4897 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  dom  ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) ) )
211 ovex 5899 . . . . . . 7  |-  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) )  e. 
_V
212211rgenw 2623 . . . . . 6  |-  A. t  e.  ( 0 (,) 1
) ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) )  e.  _V
213 dmmptg 5186 . . . . . 6  |-  ( A. t  e.  ( 0 (,) 1 ) ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) )  e.  _V  ->  dom  ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) )  =  ( 0 (,) 1 ) )
214212, 213mp1i 11 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) )  =  ( 0 (,) 1 ) )
215210, 214eqtrd 2328 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( 0 (,) 1 ) )
216 dvlipcn.m . . . . . 6  |-  ( ph  ->  M  e.  RR )
217216adantr 451 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  M  e.  RR )
218134abscld 11934 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  ( Y  -  Z )
)  e.  RR )
219217, 218remulcld 8879 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( M  x.  ( abs `  ( Y  -  Z ) ) )  e.  RR )
220209fveq1d 5543 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( RR  _D  ( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `  t )  =  ( ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) ) `  t
) )
221 eqid 2296 . . . . . . . . . . . . 13  |-  ( t  e.  ( 0 (,) 1 )  |->  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) ) )  =  ( t  e.  ( 0 (,) 1
)  |->  ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) ) )
222221fvmpt2 5624 . . . . . . . . . . . 12  |-  ( ( t  e.  ( 0 (,) 1 )  /\  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
)  e.  _V )  ->  ( ( t  e.  ( 0 (,) 1
)  |->  ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) ) ) `  t )  =  ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) )
223211, 222mpan2 652 . . . . . . . . . . 11  |-  ( t  e.  ( 0 (,) 1 )  ->  (
( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) ) `  t
)  =  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) ) )
224220, 223sylan9eq 2348 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
)  =  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) ) )
225224fveq2d 5545 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  =  ( abs `  (
( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) ) )
226 dvfcn 19274 . . . . . . . . . . 11  |-  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC
2277ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  B  C_ 
dom  ( CC  _D  F ) )
228227, 133sseldd 3194 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  dom  ( CC 
_D  F ) )
229 ffvelrn 5679 . . . . . . . . . . 11  |-  ( ( ( CC  _D  F
) : dom  ( CC  _D  F ) --> CC 
/\  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  e.  dom  ( CC  _D  F
) )  ->  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  e.  CC )
230226, 228, 229sylancr 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  e.  CC )
231230, 135absmuld 11952 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) ) )  =  ( ( abs `  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) )  x.  ( abs `  ( Y  -  Z
) ) ) )
232225, 231eqtrd 2328 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  =  ( ( abs `  ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  x.  ( abs `  ( Y  -  Z ) ) ) )
233230abscld 11934 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )  e.  RR )
234216ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
235135abscld 11934 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( Y  -  Z ) )  e.  RR )
236135absge0d 11942 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  0  <_  ( abs `  ( Y  -  Z )
) )
237 dvlipcn.l . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  B )  ->  ( abs `  ( ( CC 
_D  F ) `  x ) )  <_  M )
238237ralrimiva 2639 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  B  ( abs `  ( ( CC  _D  F ) `
 x ) )  <_  M )
239 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( CC  _D  F
) `  x )  =  ( ( CC 
_D  F ) `  y ) )
240239fveq2d 5545 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( abs `  ( ( CC 
_D  F ) `  x ) )  =  ( abs `  (
( CC  _D  F
) `  y )
) )
241240breq1d 4049 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( abs `  (
( CC  _D  F
) `  x )
)  <_  M  <->  ( abs `  ( ( CC  _D  F ) `  y
) )  <_  M
) )
242241cbvralv 2777 . . . . . . . . . . . 12  |-  ( A. x  e.  B  ( abs `  ( ( CC 
_D  F ) `  x ) )  <_  M 
<-> 
A. y  e.  B  ( abs `  ( ( CC  _D  F ) `
 y ) )  <_  M )
243238, 242sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  B  ( abs `  ( ( CC  _D  F ) `
 y ) )  <_  M )
244243ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  A. y  e.  B  ( abs `  ( ( CC  _D  F ) `  y
) )  <_  M
)
245 fveq2 5541 . . . . . . . . . . . . 13  |-  ( y  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  (
( CC  _D  F
) `  y )  =  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
246245fveq2d 5545 . . . . . . . . . . . 12  |-  ( y  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  ( abs `  ( ( CC 
_D  F ) `  y ) )  =  ( abs `  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )
247246breq1d 4049 . . . . . . . . . . 11  |-  ( y  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  (
( abs `  (
( CC  _D  F
) `  y )
)  <_  M  <->  ( abs `  ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  <_  M
) )
248247rspcv 2893 . . . . . . . . . 10  |-  ( ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  B  ->  ( A. y  e.  B  ( abs `  ( ( CC  _D  F ) `
 y ) )  <_  M  ->  ( abs `  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )  <_  M ) )
249133, 244, 248sylc 56 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )  <_  M )
250233, 234, 235, 236, 249lemul1ad 9712 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( abs `  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) )  x.  ( abs `  ( Y  -  Z
) ) )  <_ 
( M  x.  ( abs `  ( Y  -  Z ) ) ) )
251232, 250eqbrtrd 4059 . . . . . . 7  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  <_  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
252251ralrimiva 2639 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  A. t  e.  (
0 (,) 1 ) ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) ) )
253 nfv 1609 . . . . . . 7  |-  F/ z ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) )
254 nfcv 2432 . . . . . . . . 9  |-  F/_ t abs
255 nfcv 2432 . . . . . . . . . . 11  |-  F/_ t RR
256 nfcv 2432 . . . . . . . . . . 11  |-  F/_ t  _D
257 nfmpt1 4125 . . . . . . . . . . 11  |-  F/_ t
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )
258255, 256, 257nfov 5897 . . . . . . . . . 10  |-  F/_ t
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )
259 nfcv 2432 . . . . . . . . . 10  |-  F/_ t
z
260258, 259nffv 5548 . . . . . . . . 9  |-  F/_ t
( ( RR  _D  ( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `  z )
261254, 260nffv 5548 . . . . . . . 8  |-  F/_ t
( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )
262 nfcv 2432 . . . . . . . 8  |-  F/_ t  <_
263 nfcv 2432 . . . . . . . 8  |-  F/_ t
( M  x.  ( abs `  ( Y  -  Z ) ) )
264261, 262, 263nfbr 4083 . . . . . . 7  |-  F/ t ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) )
265 fveq2 5541 . . . . . . . . 9  |-  ( t  =  z  ->  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
)  =  ( ( RR  _D  ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) ) `  z ) )
266265fveq2d 5545 . . . . . . . 8  |-  ( t  =  z  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  =  ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) ) )
267266breq1d 4049 . . . . . . 7  |-  ( t  =  z  ->  (
( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) )  <->  ( abs `  ( ( RR  _D  ( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `  z ) )  <_ 
( M  x.  ( abs `  ( Y  -  Z ) ) ) ) )
268253, 264, 267cbvral 2773 . . . . . 6  |-  ( A. t  e.  ( 0 (,) 1 ) ( abs `  ( ( RR  _D  ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) ) `  t ) )  <_  ( M  x.  ( abs `  ( Y  -  Z )
) )  <->  A. z  e.  ( 0 (,) 1
) ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) ) )
269252, 268sylib 188 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  A. z  e.  (
0 (,) 1 ) ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) ) )
270269r19.21bi 2654 . . . 4  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 z ) )  <_  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
2714, 6, 113, 215, 219, 270dvlip 19356 . . 3  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( 1  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1
) ) )  -> 
( abs `  (
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  -  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
) ) )  <_ 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  ( abs `  ( 1  -  0 ) ) ) )
2721, 2, 271mpanr12 666 . 2  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  -  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
) ) )  <_ 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  ( abs `  ( 1  -  0 ) ) ) )
273 oveq2 5882 . . . . . . . . 9  |-  ( t  =  1  ->  ( Y  x.  t )  =  ( Y  x.  1 ) )
274 oveq2 5882 . . . . . . . . . . 11  |-  ( t  =  1  ->  (
1  -  t )  =  ( 1  -  1 ) )
275 1m1e0 9830 . . . . . . . . . . 11  |-  ( 1  -  1 )  =  0
276274, 275syl6eq 2344 . . . . . . . . . 10  |-  ( t  =  1  ->  (
1  -  t )  =  0 )
277276oveq2d 5890 . . . . . . . . 9  |-  ( t  =  1  ->  ( Z  x.  ( 1  -  t ) )  =  ( Z  x.  0 ) )
278273, 277oveq12d 5892 . . . . . . . 8  |-  ( t  =  1  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  =  ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) )
279278fveq2d 5545 . . . . . . 7  |-  ( t  =  1  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  =  ( F `  ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) ) )
280 eqid 2296 . . . . . . 7  |-  ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) )  =  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
281 fvex 5555 . . . . . . 7  |-  ( F `
 ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) )  e. 
_V
282279, 280, 281fvmpt 5618 . . . . . 6  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  1
)  =  ( F `
 ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) ) )
2831, 282ax-mp 8 . . . . 5  |-  ( ( t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) `  1 )  =  ( F `  ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) )
28427mul01d 9027 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  0 )  =  0 )
285158, 284oveq12d 5892 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  1 )  +  ( Z  x.  0 ) )  =  ( Y  +  0 ) )
28617addid1d 9028 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  +  0 )  =  Y )
287285, 286eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  1 )  +  ( Z  x.  0 ) )  =  Y )
288287fveq2d 5545 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F `  (
( Y  x.  1 )  +  ( Z  x.  0 ) ) )  =  ( F `
 Y ) )
289283, 288syl5eq 2340 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  =  ( F `  Y ) )
290 oveq2 5882 . . . . . . . . 9  |-  ( t  =  0  ->  ( Y  x.  t )  =  ( Y  x.  0 ) )
291 oveq2 5882 . . . . . . . . . . 11  |-  ( t  =  0  ->  (
1  -  t )  =  ( 1  -  0 ) )
29273subid1i 9134 . . . . . . . . . . 11  |-  ( 1  -  0 )  =  1
293291, 292syl6eq 2344 . . . . . . . . . 10  |-  ( t  =  0  ->  (
1  -  t )  =  1 )
294293oveq2d 5890 . . . . . . . . 9  |-  ( t  =  0  ->  ( Z  x.  ( 1  -  t ) )  =  ( Z  x.  1 ) )
295290, 294oveq12d 5892 . . . . . . . 8  |-  ( t  =  0  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  =  ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) )
296295fveq2d 5545 . . . . . . 7  |-  ( t  =  0  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  =  ( F `  ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) ) )
297 fvex 5555 . . . . . . 7  |-  ( F `
 ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) )  e. 
_V
298296, 280, 297fvmpt 5618 . . . . . 6  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
)  =  ( F `
 ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) ) )
2992, 298ax-mp 8 . . . . 5  |-  ( ( t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) `  0 )  =  ( F `  ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) )
30017mul01d 9027 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  x.  0 )  =  0 )
30127mulid1d 8868 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  1 )  =  Z )
302300, 301oveq12d 5892 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  0 )  +  ( Z  x.  1 ) )  =  ( 0  +  Z ) )
30327addid2d 9029 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0  +  Z
)  =  Z )
304302, 303eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  0 )  +  ( Z  x.  1 ) )  =  Z )
305304fveq2d 5545 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F `  (
( Y  x.  0 )  +  ( Z  x.  1 ) ) )  =  ( F `
 Z ) )
306299, 305syl5eq 2340 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
0 )  =  ( F `  Z ) )
307289, 306oveq12d 5892 . . 3  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) `
 1 )  -  ( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
0 ) )  =  ( ( F `  Y )  -  ( F `  Z )
) )
308307fveq2d 5545 . 2  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  -  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
) ) )  =  ( abs `  (
( F `  Y
)  -  ( F `
 Z ) ) ) )
309292fveq2i 5544 . . . . 5  |-  ( abs `  ( 1  -  0 ) )  =  ( abs `  1 )
310 abs1 11798 . . . . 5  |-  ( abs `  1 )  =  1
311309, 310eqtri 2316 . . . 4  |-  ( abs `  ( 1  -  0 ) )  =  1
312311oveq2i 5885 . . 3  |-  ( ( M  x.  ( abs `  ( Y  -  Z
) ) )  x.  ( abs `  (
1  -  0 ) ) )  =  ( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  1 )
313219recnd 8877 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( M  x.  ( abs `  ( Y  -  Z ) ) )  e.  CC )
314313mulid1d 8868 . . 3  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  1 )  =  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
315312, 314syl5eq 2340 . 2  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  ( abs `  ( 1  -  0 ) ) )  =  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
316272, 308, 3153brtr3d 4068 1  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( F `  Y
)  -  ( F `
 Z ) ) )  <_  ( M  x.  ( abs `  ( Y  -  Z )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    i^i cin 3164    C_ wss 3165   {cpr 3654   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706    |` cres 4707    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758   RR*cxr 8882    <_ cle 8884    - cmin 9053   -ucneg 9054   (,)cioo 10672   [,]cicc 10675   abscabs 11735   ↾t crest 13341   TopOpenctopn 13342   topGenctg 13358   * Metcxmt 16385   ballcbl 16387  ℂfldccnfld 16393   Topctop 16647   intcnt 16770    Cn ccn 16970    tX ctx 17271   -cn->ccncf 18396    _D cdv 19229
This theorem is referenced by:  dvlip2  19358  dv11cn  19364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator