MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Structured version   Unicode version

Theorem dvlipcn 19880
Description: A complex function with derivative bounded by  M on an open ball is Lipschitz continuous with Lipchitz constant equal to  M. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x  |-  ( ph  ->  X  C_  CC )
dvlipcn.f  |-  ( ph  ->  F : X --> CC )
dvlipcn.a  |-  ( ph  ->  A  e.  CC )
dvlipcn.r  |-  ( ph  ->  R  e.  RR* )
dvlipcn.b  |-  B  =  ( A ( ball `  ( abs  o.  -  ) ) R )
dvlipcn.d  |-  ( ph  ->  B  C_  dom  ( CC 
_D  F ) )
dvlipcn.m  |-  ( ph  ->  M  e.  RR )
dvlipcn.l  |-  ( (
ph  /\  x  e.  B )  ->  ( abs `  ( ( CC 
_D  F ) `  x ) )  <_  M )
Assertion
Ref Expression
dvlipcn  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( F `  Y
)  -  ( F `
 Z ) ) )  <_  ( M  x.  ( abs `  ( Y  -  Z )
) ) )
Distinct variable groups:    x, B    x, F    x, M    ph, x
Allowed substitution hints:    A( x)    R( x)    X( x)    Y( x)    Z( x)

Proof of Theorem dvlipcn
Dummy variables  t 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 11018 . . 3  |-  1  e.  ( 0 [,] 1
)
2 0elunit 11017 . . 3  |-  0  e.  ( 0 [,] 1
)
3 0re 9093 . . . . 5  |-  0  e.  RR
43a1i 11 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
0  e.  RR )
5 1re 9092 . . . . 5  |-  1  e.  RR
65a1i 11 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
1  e.  RR )
7 dvlipcn.d . . . . . . . . . . . . . 14  |-  ( ph  ->  B  C_  dom  ( CC 
_D  F ) )
8 ssid 3369 . . . . . . . . . . . . . . . 16  |-  CC  C_  CC
98a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  CC  C_  CC )
10 dvlipcn.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : X --> CC )
11 dvlipcn.x . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  C_  CC )
129, 10, 11dvbss 19790 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( CC  _D  F )  C_  X
)
137, 12sstrd 3360 . . . . . . . . . . . . 13  |-  ( ph  ->  B  C_  X )
1413, 11sstrd 3360 . . . . . . . . . . . 12  |-  ( ph  ->  B  C_  CC )
1514adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  B  C_  CC )
16 simprl 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Y  e.  B )
1715, 16sseldd 3351 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Y  e.  CC )
1817adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Y  e.  CC )
19 unitssre 11044 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  C_  RR
20 ax-resscn 9049 . . . . . . . . . . 11  |-  RR  C_  CC
2119, 20sstri 3359 . . . . . . . . . 10  |-  ( 0 [,] 1 )  C_  CC
22 simpr 449 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  t  e.  ( 0 [,] 1
) )
2321, 22sseldi 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  t  e.  CC )
2418, 23mulcomd 9111 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  ( Y  x.  t )  =  ( t  x.  Y ) )
25 simprr 735 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Z  e.  B )
2615, 25sseldd 3351 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  Z  e.  CC )
2726adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Z  e.  CC )
28 iirev 18956 . . . . . . . . . . 11  |-  ( t  e.  ( 0 [,] 1 )  ->  (
1  -  t )  e.  ( 0 [,] 1 ) )
2928adantl 454 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
1  -  t )  e.  ( 0 [,] 1 ) )
3021, 29sseldi 3348 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
1  -  t )  e.  CC )
3127, 30mulcomd 9111 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  ( Z  x.  ( 1  -  t ) )  =  ( ( 1  -  t )  x.  Z ) )
3224, 31oveq12d 6101 . . . . . . 7  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  =  ( ( t  x.  Y )  +  ( ( 1  -  t )  x.  Z
) ) )
33 dvlipcn.a . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3433ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  A  e.  CC )
35 dvlipcn.r . . . . . . . . 9  |-  ( ph  ->  R  e.  RR* )
3635ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  R  e.  RR* )
3716adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Y  e.  B )
3825adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  Z  e.  B )
39 dvlipcn.b . . . . . . . . 9  |-  B  =  ( A ( ball `  ( abs  o.  -  ) ) R )
4039blcvx 18831 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  R  e.  RR* )  /\  ( Y  e.  B  /\  Z  e.  B  /\  t  e.  (
0 [,] 1 ) ) )  ->  (
( t  x.  Y
)  +  ( ( 1  -  t )  x.  Z ) )  e.  B )
4134, 36, 37, 38, 22, 40syl23anc 1192 . . . . . . 7  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( t  x.  Y
)  +  ( ( 1  -  t )  x.  Z ) )  e.  B )
4232, 41eqeltrd 2512 . . . . . 6  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  B )
43 eqidd 2439 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  =  ( t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )
44 fssres 5612 . . . . . . . . . 10  |-  ( ( F : X --> CC  /\  B  C_  X )  -> 
( F  |`  B ) : B --> CC )
4510, 13, 44syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  ( F  |`  B ) : B --> CC )
4645feqmptd 5781 . . . . . . . 8  |-  ( ph  ->  ( F  |`  B )  =  ( z  e.  B  |->  ( ( F  |`  B ) `  z
) ) )
47 fvres 5747 . . . . . . . . 9  |-  ( z  e.  B  ->  (
( F  |`  B ) `
 z )  =  ( F `  z
) )
4847mpteq2ia 4293 . . . . . . . 8  |-  ( z  e.  B  |->  ( ( F  |`  B ) `  z ) )  =  ( z  e.  B  |->  ( F `  z
) )
4946, 48syl6eq 2486 . . . . . . 7  |-  ( ph  ->  ( F  |`  B )  =  ( z  e.  B  |->  ( F `  z ) ) )
5049adantr 453 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F  |`  B )  =  ( z  e.  B  |->  ( F `  z ) ) )
51 fveq2 5730 . . . . . 6  |-  ( z  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  ( F `  z )  =  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
5242, 43, 50, 51fmptco 5903 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( F  |`  B )  o.  (
t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  =  ( t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )
53 eqid 2438 . . . . . . . 8  |-  ( t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  =  ( t  e.  ( 0 [,] 1
)  |->  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )
5442, 53fmptd 5895 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) : ( 0 [,] 1 ) --> B )
55 eqid 2438 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5655addcn 18897 . . . . . . . . . 10  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
5756a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  +  e.  ( (
( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5855mulcn 18899 . . . . . . . . . . 11  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
5958a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  x.  e.  ( ( (
TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
60 cncfmptc 18943 . . . . . . . . . . . 12  |-  ( ( Y  e.  CC  /\  ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  Y )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6121, 8, 60mp3an23 1272 . . . . . . . . . . 11  |-  ( Y  e.  CC  ->  (
t  e.  ( 0 [,] 1 )  |->  Y )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6217, 61syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  Y )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
63 cncfmptid 18944 . . . . . . . . . . . 12  |-  ( ( ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6421, 8, 63mp2an 655 . . . . . . . . . . 11  |-  ( t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( 0 [,] 1 ) -cn-> CC )
6564a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  t )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
6655, 59, 62, 65cncfmpt2f 18946 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( Y  x.  t
) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
67 cncfmptc 18943 . . . . . . . . . . . 12  |-  ( ( Z  e.  CC  /\  ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  Z )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6821, 8, 67mp3an23 1272 . . . . . . . . . . 11  |-  ( Z  e.  CC  ->  (
t  e.  ( 0 [,] 1 )  |->  Z )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
6926, 68syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  Z )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7055subcn 18898 . . . . . . . . . . . 12  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7170a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  -  e.  ( (
( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
72 ax-1cn 9050 . . . . . . . . . . . . 13  |-  1  e.  CC
73 cncfmptc 18943 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( 0 [,] 1
)  C_  CC  /\  CC  C_  CC )  ->  (
t  e.  ( 0 [,] 1 )  |->  1 )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )
7472, 21, 8, 73mp3an 1280 . . . . . . . . . . . 12  |-  ( t  e.  ( 0 [,] 1 )  |->  1 )  e.  ( ( 0 [,] 1 ) -cn-> CC )
7574a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  1 )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7655, 71, 75, 65cncfmpt2f 18946 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( 1  -  t
) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7755, 59, 69, 76cncfmpt2f 18946 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( Z  x.  (
1  -  t ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
7855, 57, 66, 77cncfmpt2f 18946 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
79 cncffvrn 18930 . . . . . . . 8  |-  ( ( B  C_  CC  /\  (
t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  ( ( 0 [,] 1 )
-cn-> CC ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  e.  ( ( 0 [,] 1 ) -cn-> B )  <-> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) : ( 0 [,] 1 ) --> B ) )
8015, 78, 79syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  e.  ( ( 0 [,] 1 ) -cn-> B )  <-> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) : ( 0 [,] 1 ) --> B ) )
8154, 80mpbird 225 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> B ) )
828a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  CC  C_  CC )
8345adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F  |`  B ) : B --> CC )
8455cnfldtop 18820 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
8555cnfldtopon 18819 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
8685toponunii 16999 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
8786restid 13663 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
8884, 87ax-mp 8 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
8988eqcomi 2442 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
9055, 89dvres 19800 . . . . . . . . . . . 12  |-  ( ( ( CC  C_  CC  /\  F : X --> CC )  /\  ( X  C_  CC  /\  B  C_  CC ) )  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) ) )
919, 10, 11, 14, 90syl22anc 1186 . . . . . . . . . . 11  |-  ( ph  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  ( ( int `  ( TopOpen
` fld
) ) `  B
) ) )
92 cnxmet 18809 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
9392a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
9455cnfldtopn 18818 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
9594blopn 18532 . . . . . . . . . . . . . . 15  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  A  e.  CC  /\  R  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) R )  e.  (
TopOpen ` fld ) )
9693, 33, 35, 95syl3anc 1185 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A ( ball `  ( abs  o.  -  ) ) R )  e.  ( TopOpen ` fld ) )
9739, 96syl5eqel 2522 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  ( TopOpen ` fld )
)
98 isopn3i 17148 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  B  e.  ( TopOpen ` fld )
)  ->  ( ( int `  ( TopOpen ` fld ) ) `  B
)  =  B )
9984, 97, 98sylancr 646 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( int `  ( TopOpen
` fld
) ) `  B
)  =  B )
10099reseq2d 5148 . . . . . . . . . . 11  |-  ( ph  ->  ( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) )  =  ( ( CC  _D  F
)  |`  B ) )
10191, 100eqtrd 2470 . . . . . . . . . 10  |-  ( ph  ->  ( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  B ) )
102101dmeqd 5074 . . . . . . . . 9  |-  ( ph  ->  dom  ( CC  _D  ( F  |`  B ) )  =  dom  (
( CC  _D  F
)  |`  B ) )
103 dmres 5169 . . . . . . . . . 10  |-  dom  (
( CC  _D  F
)  |`  B )  =  ( B  i^i  dom  ( CC  _D  F
) )
104 df-ss 3336 . . . . . . . . . . 11  |-  ( B 
C_  dom  ( CC  _D  F )  <->  ( B  i^i  dom  ( CC  _D  F ) )  =  B )
1057, 104sylib 190 . . . . . . . . . 10  |-  ( ph  ->  ( B  i^i  dom  ( CC  _D  F
) )  =  B )
106103, 105syl5eq 2482 . . . . . . . . 9  |-  ( ph  ->  dom  ( ( CC 
_D  F )  |`  B )  =  B )
107102, 106eqtrd 2470 . . . . . . . 8  |-  ( ph  ->  dom  ( CC  _D  ( F  |`  B ) )  =  B )
108107adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( CC  _D  ( F  |`  B ) )  =  B )
109 dvcn 19809 . . . . . . 7  |-  ( ( ( CC  C_  CC  /\  ( F  |`  B ) : B --> CC  /\  B  C_  CC )  /\  dom  ( CC  _D  ( F  |`  B ) )  =  B )  -> 
( F  |`  B )  e.  ( B -cn-> CC ) )
11082, 83, 15, 108, 109syl31anc 1188 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F  |`  B )  e.  ( B -cn-> CC ) )
11181, 110cncfco 18939 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( F  |`  B )  o.  (
t  e.  ( 0 [,] 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
11252, 111eqeltrrd 2513 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  e.  ( ( 0 [,] 1
) -cn-> CC ) )
11320a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  RR  C_  CC )
11419a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0 [,] 1
)  C_  RR )
11510ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  F : X --> CC )
11613ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  B  C_  X )
117116, 42sseldd 3351 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  X )
118115, 117ffvelrnd 5873 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 [,] 1
) )  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  e.  CC )
11955tgioo2 18836 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
120 iccntr 18854 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] 1 ) )  =  ( 0 (,) 1
) )
1214, 5, 120sylancl 645 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] 1 ) )  =  ( 0 (,) 1
) )
122113, 114, 118, 119, 55, 121dvmptntr 19859 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( RR  _D  ( t  e.  ( 0 (,) 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) ) )
123 reex 9083 . . . . . . . . . 10  |-  RR  e.  _V
124123prid1 3914 . . . . . . . . 9  |-  RR  e.  { RR ,  CC }
125124a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  RR  e.  { RR ,  CC } )
126 cnex 9073 . . . . . . . . . 10  |-  CC  e.  _V
127126prid2 3915 . . . . . . . . 9  |-  CC  e.  { RR ,  CC }
128127a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  CC  e.  { RR ,  CC } )
129 ioossicc 10998 . . . . . . . . . 10  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
130129sseli 3346 . . . . . . . . 9  |-  ( t  e.  ( 0 (,) 1 )  ->  t  e.  ( 0 [,] 1
) )
131130, 42sylan2 462 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  B )
13217, 26subcld 9413 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  -  Z
)  e.  CC )
133132adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( Y  -  Z )  e.  CC )
13413adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  B  C_  X )
135134sselda 3350 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  B )  ->  z  e.  X )
13610adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  F : X --> CC )
137136ffvelrnda 5872 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  X )  ->  ( F `  z )  e.  CC )
138135, 137syldan 458 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
139 fvex 5744 . . . . . . . . 9  |-  ( ( CC  _D  F ) `
 z )  e. 
_V
140139a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  B )  ->  (
( CC  _D  F
) `  z )  e.  _V )
14117adantr 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  Y  e.  CC )
142130, 23sylan2 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  t  e.  CC )
143141, 142mulcld 9110 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( Y  x.  t )  e.  CC )
1445a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
145 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  t  e.  RR )
146145recnd 9116 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  t  e.  CC )
1475a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  1  e.  RR )
148125dvmptid 19845 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  RR  |->  t ) )  =  ( t  e.  RR  |->  1 ) )
149 ioossre 10974 . . . . . . . . . . . . . 14  |-  ( 0 (,) 1 )  C_  RR
150149a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0 (,) 1
)  C_  RR )
151 iooretop 18802 . . . . . . . . . . . . . 14  |-  ( 0 (,) 1 )  e.  ( topGen `  ran  (,) )
152151a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0 (,) 1
)  e.  ( topGen ` 
ran  (,) ) )
153125, 146, 147, 148, 150, 119, 55, 152dvmptres 19851 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  t ) )  =  ( t  e.  ( 0 (,) 1 )  |->  1 ) )
154125, 142, 144, 153, 17dvmptcmul 19852 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Y  x.  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Y  x.  1 ) ) )
15517mulid1d 9107 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  x.  1 )  =  Y )
156155mpteq2dv 4298 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 (,) 1 ) 
|->  ( Y  x.  1 ) )  =  ( t  e.  ( 0 (,) 1 )  |->  Y ) )
157154, 156eqtrd 2470 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Y  x.  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  Y ) )
15826adantr 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  Z  e.  CC )
159130, 30sylan2 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
1  -  t )  e.  CC )
160158, 159mulcld 9110 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( Z  x.  ( 1  -  t ) )  e.  CC )
161 negex 9306 . . . . . . . . . . 11  |-  -u Z  e.  _V
162161a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u Z  e.  _V )
163 negex 9306 . . . . . . . . . . . . 13  |-  -u 1  e.  _V
164163a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  -u 1  e.  _V )
16572a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  1  e.  CC )
1663a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  0  e.  RR )
16772a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  1  e.  CC )
1683a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  RR )  ->  0  e.  RR )
16972a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
1  e.  CC )
170125, 169dvmptc 19846 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  RR  |->  1 ) )  =  ( t  e.  RR  |->  0 ) )
171125, 167, 168, 170, 150, 119, 55, 152dvmptres 19851 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  1 ) )  =  ( t  e.  ( 0 (,) 1 )  |->  0 ) )
172125, 165, 166, 171, 142, 144, 153dvmptsub 19855 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( 1  -  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( 0  -  1 ) ) )
173 df-neg 9296 . . . . . . . . . . . . . 14  |-  -u 1  =  ( 0  -  1 )
174173mpteq2i 4294 . . . . . . . . . . . . 13  |-  ( t  e.  ( 0 (,) 1 )  |->  -u 1
)  =  ( t  e.  ( 0 (,) 1 )  |->  ( 0  -  1 ) )
175172, 174syl6eqr 2488 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( 1  -  t ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  -u
1 ) )
176125, 159, 164, 175, 26dvmptcmul 19852 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Z  x.  ( 1  -  t ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Z  x.  -u 1
) ) )
177 neg1cn 10069 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
178 mulcom 9078 . . . . . . . . . . . . . 14  |-  ( ( Z  e.  CC  /\  -u 1  e.  CC )  ->  ( Z  x.  -u 1 )  =  (
-u 1  x.  Z
) )
17926, 177, 178sylancl 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  -u 1
)  =  ( -u
1  x.  Z ) )
18026mulm1d 9487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( -u 1  x.  Z
)  =  -u Z
)
181179, 180eqtrd 2470 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  -u 1
)  =  -u Z
)
182181mpteq2dv 4298 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 (,) 1 ) 
|->  ( Z  x.  -u 1
) )  =  ( t  e.  ( 0 (,) 1 )  |->  -u Z ) )
183176, 182eqtrd 2470 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( Z  x.  ( 1  -  t ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  -u Z ) )
184125, 143, 141, 157, 160, 162, 183dvmptadd 19848 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Y  +  -u Z
) ) )
18517, 26negsubd 9419 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  +  -u Z )  =  ( Y  -  Z ) )
186185mpteq2dv 4298 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( t  e.  ( 0 (,) 1 ) 
|->  ( Y  +  -u Z ) )  =  ( t  e.  ( 0 (,) 1 ) 
|->  ( Y  -  Z
) ) )
187184, 186eqtrd 2470 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( Y  -  Z ) ) )
18811adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  X  C_  CC )
18982, 136, 188, 15, 90syl22anc 1186 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  ( ( int `  ( TopOpen
` fld
) ) `  B
) ) )
19099adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( int `  ( TopOpen
` fld
) ) `  B
)  =  B )
191190reseq2d 5148 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  (
( int `  ( TopOpen
` fld
) ) `  B
) )  =  ( ( CC  _D  F
)  |`  B ) )
192189, 191eqtrd 2470 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) )  =  ( ( CC 
_D  F )  |`  B ) )
19350oveq2d 6099 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) )  =  ( CC  _D  ( z  e.  B  |->  ( F `  z
) ) ) )
194 dvfcn 19797 . . . . . . . . . . . . 13  |-  ( CC 
_D  ( F  |`  B ) ) : dom  ( CC  _D  ( F  |`  B ) ) --> CC
195108feq2d 5583 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  ( F  |`  B ) ) : dom  ( CC  _D  ( F  |`  B ) ) --> CC  <->  ( CC  _D  ( F  |`  B ) ) : B --> CC ) )
196194, 195mpbii 204 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  ( F  |`  B ) ) : B --> CC )
197192feq1d 5582 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  ( F  |`  B ) ) : B --> CC  <->  ( ( CC  _D  F )  |`  B ) : B --> CC ) )
198196, 197mpbid 203 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  B ) : B --> CC )
199198feqmptd 5781 . . . . . . . . . 10  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  B )  =  ( z  e.  B  |->  ( ( ( CC  _D  F )  |`  B ) `  z
) ) )
200 fvres 5747 . . . . . . . . . . 11  |-  ( z  e.  B  ->  (
( ( CC  _D  F )  |`  B ) `
 z )  =  ( ( CC  _D  F ) `  z
) )
201200mpteq2ia 4293 . . . . . . . . . 10  |-  ( z  e.  B  |->  ( ( ( CC  _D  F
)  |`  B ) `  z ) )  =  ( z  e.  B  |->  ( ( CC  _D  F ) `  z
) )
202199, 201syl6eq 2486 . . . . . . . . 9  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( CC  _D  F )  |`  B )  =  ( z  e.  B  |->  ( ( CC 
_D  F ) `  z ) ) )
203192, 193, 2023eqtr3d 2478 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( CC  _D  (
z  e.  B  |->  ( F `  z ) ) )  =  ( z  e.  B  |->  ( ( CC  _D  F
) `  z )
) )
204 fveq2 5730 . . . . . . . 8  |-  ( z  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  (
( CC  _D  F
) `  z )  =  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
205125, 128, 131, 133, 138, 140, 187, 203, 51, 204dvmptco 19860 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 (,) 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) ) )
206122, 205eqtrd 2470 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( t  e.  ( 0 (,) 1 )  |->  ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) ) )
207206dmeqd 5074 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  dom  ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) ) )
208 ovex 6108 . . . . . . 7  |-  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) )  e. 
_V
209208rgenw 2775 . . . . . 6  |-  A. t  e.  ( 0 (,) 1
) ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) )  e.  _V
210 dmmptg 5369 . . . . . 6  |-  ( A. t  e.  ( 0 (,) 1 ) ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) )  e.  _V  ->  dom  ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) )  =  ( 0 (,) 1 ) )
211209, 210mp1i 12 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) )  =  ( 0 (,) 1 ) )
212207, 211eqtrd 2470 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  dom  ( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )  =  ( 0 (,) 1 ) )
213 dvlipcn.m . . . . . 6  |-  ( ph  ->  M  e.  RR )
214213adantr 453 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  M  e.  RR )
215132abscld 12240 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  ( Y  -  Z )
)  e.  RR )
216214, 215remulcld 9118 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( M  x.  ( abs `  ( Y  -  Z ) ) )  e.  RR )
217206fveq1d 5732 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( RR  _D  ( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `  t )  =  ( ( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) ) `  t
) )
218 eqid 2438 . . . . . . . . . . . . 13  |-  ( t  e.  ( 0 (,) 1 )  |->  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) ) )  =  ( t  e.  ( 0 (,) 1
)  |->  ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) ) )
219218fvmpt2 5814 . . . . . . . . . . . 12  |-  ( ( t  e.  ( 0 (,) 1 )  /\  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
)  e.  _V )  ->  ( ( t  e.  ( 0 (,) 1
)  |->  ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) ) ) `  t )  =  ( ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) )
220208, 219mpan2 654 . . . . . . . . . . 11  |-  ( t  e.  ( 0 (,) 1 )  ->  (
( t  e.  ( 0 (,) 1 ) 
|->  ( ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z )
) ) `  t
)  =  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) ) )
221217, 220sylan9eq 2490 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
)  =  ( ( ( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  x.  ( Y  -  Z ) ) )
222221fveq2d 5734 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  =  ( abs `  (
( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) )  x.  ( Y  -  Z ) ) ) )
223 dvfcn 19797 . . . . . . . . . . 11  |-  ( CC 
_D  F ) : dom  ( CC  _D  F ) --> CC
2247ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  B  C_ 
dom  ( CC  _D  F ) )
225224, 131sseldd 3351 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  dom  ( CC 
_D  F ) )
226 ffvelrn 5870 . . . . . . . . . . 11  |-  ( ( ( CC  _D  F
) : dom  ( CC  _D  F ) --> CC 
/\  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  e.  dom  ( CC  _D  F
) )  ->  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  e.  CC )
227223, 225, 226sylancr 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  e.  CC )
228227, 133absmuld 12258 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( ( CC  _D  F ) `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) )  x.  ( Y  -  Z
) ) )  =  ( ( abs `  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) )  x.  ( abs `  ( Y  -  Z
) ) ) )
229222, 228eqtrd 2470 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  =  ( ( abs `  ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  x.  ( abs `  ( Y  -  Z ) ) ) )
230227abscld 12240 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )  e.  RR )
231213ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
232133abscld 12240 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( Y  -  Z ) )  e.  RR )
233133absge0d 12248 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  0  <_  ( abs `  ( Y  -  Z )
) )
234 dvlipcn.l . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  B )  ->  ( abs `  ( ( CC 
_D  F ) `  x ) )  <_  M )
235234ralrimiva 2791 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  B  ( abs `  ( ( CC  _D  F ) `
 x ) )  <_  M )
236 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( CC  _D  F
) `  x )  =  ( ( CC 
_D  F ) `  y ) )
237236fveq2d 5734 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( abs `  ( ( CC 
_D  F ) `  x ) )  =  ( abs `  (
( CC  _D  F
) `  y )
) )
238237breq1d 4224 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( abs `  (
( CC  _D  F
) `  x )
)  <_  M  <->  ( abs `  ( ( CC  _D  F ) `  y
) )  <_  M
) )
239238cbvralv 2934 . . . . . . . . . . . 12  |-  ( A. x  e.  B  ( abs `  ( ( CC 
_D  F ) `  x ) )  <_  M 
<-> 
A. y  e.  B  ( abs `  ( ( CC  _D  F ) `
 y ) )  <_  M )
240235, 239sylib 190 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  B  ( abs `  ( ( CC  _D  F ) `
 y ) )  <_  M )
241240ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  A. y  e.  B  ( abs `  ( ( CC  _D  F ) `  y
) )  <_  M
)
242 fveq2 5730 . . . . . . . . . . . . 13  |-  ( y  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  (
( CC  _D  F
) `  y )  =  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
243242fveq2d 5734 . . . . . . . . . . . 12  |-  ( y  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  ( abs `  ( ( CC 
_D  F ) `  y ) )  =  ( abs `  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )
244243breq1d 4224 . . . . . . . . . . 11  |-  ( y  =  ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) )  ->  (
( abs `  (
( CC  _D  F
) `  y )
)  <_  M  <->  ( abs `  ( ( CC  _D  F ) `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )  <_  M
) )
245244rspcv 3050 . . . . . . . . . 10  |-  ( ( ( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  e.  B  ->  ( A. y  e.  B  ( abs `  ( ( CC  _D  F ) `
 y ) )  <_  M  ->  ( abs `  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )  <_  M ) )
246131, 241, 245sylc 59 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( CC 
_D  F ) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )  <_  M )
247230, 231, 232, 233, 246lemul1ad 9952 . . . . . . . 8  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  (
( abs `  (
( CC  _D  F
) `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) )  x.  ( abs `  ( Y  -  Z
) ) )  <_ 
( M  x.  ( abs `  ( Y  -  Z ) ) ) )
248229, 247eqbrtrd 4234 . . . . . . 7  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  t  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  <_  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
249248ralrimiva 2791 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  A. t  e.  (
0 (,) 1 ) ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) ) )
250 nfv 1630 . . . . . . 7  |-  F/ z ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) )
251 nfcv 2574 . . . . . . . . 9  |-  F/_ t abs
252 nfcv 2574 . . . . . . . . . . 11  |-  F/_ t RR
253 nfcv 2574 . . . . . . . . . . 11  |-  F/_ t  _D
254 nfmpt1 4300 . . . . . . . . . . 11  |-  F/_ t
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) )
255252, 253, 254nfov 6106 . . . . . . . . . 10  |-  F/_ t
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) )
256 nfcv 2574 . . . . . . . . . 10  |-  F/_ t
z
257255, 256nffv 5737 . . . . . . . . 9  |-  F/_ t
( ( RR  _D  ( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `  z )
258251, 257nffv 5737 . . . . . . . 8  |-  F/_ t
( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )
259 nfcv 2574 . . . . . . . 8  |-  F/_ t  <_
260 nfcv 2574 . . . . . . . 8  |-  F/_ t
( M  x.  ( abs `  ( Y  -  Z ) ) )
261258, 259, 260nfbr 4258 . . . . . . 7  |-  F/ t ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) )
262 fveq2 5730 . . . . . . . . 9  |-  ( t  =  z  ->  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
)  =  ( ( RR  _D  ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) ) `  z ) )
263262fveq2d 5734 . . . . . . . 8  |-  ( t  =  z  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 t ) )  =  ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) ) )
264263breq1d 4224 . . . . . . 7  |-  ( t  =  z  ->  (
( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  t
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) )  <->  ( abs `  ( ( RR  _D  ( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `  z ) )  <_ 
( M  x.  ( abs `  ( Y  -  Z ) ) ) ) )
265250, 261, 264cbvral 2930 . . . . . 6  |-  ( A. t  e.  ( 0 (,) 1 ) ( abs `  ( ( RR  _D  ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) ) `  t ) )  <_  ( M  x.  ( abs `  ( Y  -  Z )
) )  <->  A. z  e.  ( 0 (,) 1
) ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) ) )
266249, 265sylib 190 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  ->  A. z  e.  (
0 (,) 1 ) ( abs `  (
( RR  _D  (
t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) ) `  z
) )  <_  ( M  x.  ( abs `  ( Y  -  Z
) ) ) )
267266r19.21bi 2806 . . . 4  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  z  e.  ( 0 (,) 1
) )  ->  ( abs `  ( ( RR 
_D  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ) `
 z ) )  <_  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
2684, 6, 112, 212, 216, 267dvlip 19879 . . 3  |-  ( ( ( ph  /\  ( Y  e.  B  /\  Z  e.  B )
)  /\  ( 1  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1
) ) )  -> 
( abs `  (
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  -  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
) ) )  <_ 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  ( abs `  ( 1  -  0 ) ) ) )
2691, 2, 268mpanr12 668 . 2  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  -  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
) ) )  <_ 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  ( abs `  ( 1  -  0 ) ) ) )
270 oveq2 6091 . . . . . . . . 9  |-  ( t  =  1  ->  ( Y  x.  t )  =  ( Y  x.  1 ) )
271 oveq2 6091 . . . . . . . . . . 11  |-  ( t  =  1  ->  (
1  -  t )  =  ( 1  -  1 ) )
272 1m1e0 10070 . . . . . . . . . . 11  |-  ( 1  -  1 )  =  0
273271, 272syl6eq 2486 . . . . . . . . . 10  |-  ( t  =  1  ->  (
1  -  t )  =  0 )
274273oveq2d 6099 . . . . . . . . 9  |-  ( t  =  1  ->  ( Z  x.  ( 1  -  t ) )  =  ( Z  x.  0 ) )
275270, 274oveq12d 6101 . . . . . . . 8  |-  ( t  =  1  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  =  ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) )
276275fveq2d 5734 . . . . . . 7  |-  ( t  =  1  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  =  ( F `  ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) ) )
277 eqid 2438 . . . . . . 7  |-  ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) )  =  ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) )
278 fvex 5744 . . . . . . 7  |-  ( F `
 ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) )  e. 
_V
279276, 277, 278fvmpt 5808 . . . . . 6  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  1
)  =  ( F `
 ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) ) )
2801, 279ax-mp 8 . . . . 5  |-  ( ( t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) `  1 )  =  ( F `  ( ( Y  x.  1 )  +  ( Z  x.  0 ) ) )
28126mul01d 9267 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  0 )  =  0 )
282155, 281oveq12d 6101 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  1 )  +  ( Z  x.  0 ) )  =  ( Y  +  0 ) )
28317addid1d 9268 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  +  0 )  =  Y )
284282, 283eqtrd 2470 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  1 )  +  ( Z  x.  0 ) )  =  Y )
285284fveq2d 5734 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F `  (
( Y  x.  1 )  +  ( Z  x.  0 ) ) )  =  ( F `
 Y ) )
286280, 285syl5eq 2482 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  =  ( F `  Y ) )
287 oveq2 6091 . . . . . . . . 9  |-  ( t  =  0  ->  ( Y  x.  t )  =  ( Y  x.  0 ) )
288 oveq2 6091 . . . . . . . . . . 11  |-  ( t  =  0  ->  (
1  -  t )  =  ( 1  -  0 ) )
28972subid1i 9374 . . . . . . . . . . 11  |-  ( 1  -  0 )  =  1
290288, 289syl6eq 2486 . . . . . . . . . 10  |-  ( t  =  0  ->  (
1  -  t )  =  1 )
291290oveq2d 6099 . . . . . . . . 9  |-  ( t  =  0  ->  ( Z  x.  ( 1  -  t ) )  =  ( Z  x.  1 ) )
292287, 291oveq12d 6101 . . . . . . . 8  |-  ( t  =  0  ->  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) )  =  ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) )
293292fveq2d 5734 . . . . . . 7  |-  ( t  =  0  ->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) )  =  ( F `  ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) ) )
294 fvex 5744 . . . . . . 7  |-  ( F `
 ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) )  e. 
_V
295293, 277, 294fvmpt 5808 . . . . . 6  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
)  =  ( F `
 ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) ) )
2962, 295ax-mp 8 . . . . 5  |-  ( ( t  e.  ( 0 [,] 1 )  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t
) ) ) ) ) `  0 )  =  ( F `  ( ( Y  x.  0 )  +  ( Z  x.  1 ) ) )
29717mul01d 9267 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Y  x.  0 )  =  0 )
29826mulid1d 9107 . . . . . . . 8  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( Z  x.  1 )  =  Z )
299297, 298oveq12d 6101 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  0 )  +  ( Z  x.  1 ) )  =  ( 0  +  Z ) )
30026addid2d 9269 . . . . . . 7  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( 0  +  Z
)  =  Z )
301299, 300eqtrd 2470 . . . . . 6  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  x.  0 )  +  ( Z  x.  1 ) )  =  Z )
302301fveq2d 5734 . . . . 5  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( F `  (
( Y  x.  0 )  +  ( Z  x.  1 ) ) )  =  ( F `
 Z ) )
303296, 302syl5eq 2482 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
0 )  =  ( F `  Z ) )
304286, 303oveq12d 6101 . . 3  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( ( t  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( Y  x.  t )  +  ( Z  x.  (
1  -  t ) ) ) ) ) `
 1 )  -  ( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
0 ) )  =  ( ( F `  Y )  -  ( F `  Z )
) )
305304fveq2d 5734 . 2  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( ( t  e.  ( 0 [,] 1
)  |->  ( F `  ( ( Y  x.  t )  +  ( Z  x.  ( 1  -  t ) ) ) ) ) ` 
1 )  -  (
( t  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( Y  x.  t
)  +  ( Z  x.  ( 1  -  t ) ) ) ) ) `  0
) ) )  =  ( abs `  (
( F `  Y
)  -  ( F `
 Z ) ) ) )
306289fveq2i 5733 . . . . 5  |-  ( abs `  ( 1  -  0 ) )  =  ( abs `  1 )
307 abs1 12104 . . . . 5  |-  ( abs `  1 )  =  1
308306, 307eqtri 2458 . . . 4  |-  ( abs `  ( 1  -  0 ) )  =  1
309308oveq2i 6094 . . 3  |-  ( ( M  x.  ( abs `  ( Y  -  Z
) ) )  x.  ( abs `  (
1  -  0 ) ) )  =  ( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  1 )
310216recnd 9116 . . . 4  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( M  x.  ( abs `  ( Y  -  Z ) ) )  e.  CC )
311310mulid1d 9107 . . 3  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  1 )  =  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
312309, 311syl5eq 2482 . 2  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( ( M  x.  ( abs `  ( Y  -  Z ) ) )  x.  ( abs `  ( 1  -  0 ) ) )  =  ( M  x.  ( abs `  ( Y  -  Z ) ) ) )
313269, 305, 3123brtr3d 4243 1  |-  ( (
ph  /\  ( Y  e.  B  /\  Z  e.  B ) )  -> 
( abs `  (
( F `  Y
)  -  ( F `
 Z ) ) )  <_  ( M  x.  ( abs `  ( Y  -  Z )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    i^i cin 3321    C_ wss 3322   {cpr 3817   class class class wbr 4214    e. cmpt 4268   dom cdm 4880   ran crn 4881    |` cres 4882    o. ccom 4884   -->wf 5452   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997   RR*cxr 9121    <_ cle 9123    - cmin 9293   -ucneg 9294   (,)cioo 10918   [,]cicc 10921   abscabs 12041   ↾t crest 13650   TopOpenctopn 13651   topGenctg 13667   * Metcxmt 16688   ballcbl 16690  ℂfldccnfld 16705   Topctop 16960   intcnt 17083    Cn ccn 17290    tX ctx 17594   -cn->ccncf 18908    _D cdv 19752
This theorem is referenced by:  dvlip2  19881  dv11cn  19887
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-cmp 17452  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756
  Copyright terms: Public domain W3C validator