MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptntr Unicode version

Theorem dvmptntr 19320
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptntr.s  |-  ( ph  ->  S  C_  CC )
dvmptntr.x  |-  ( ph  ->  X  C_  S )
dvmptntr.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptntr.j  |-  J  =  ( Kt  S )
dvmptntr.k  |-  K  =  ( TopOpen ` fld )
dvmptntr.i  |-  ( ph  ->  ( ( int `  J
) `  X )  =  Y )
Assertion
Ref Expression
dvmptntr  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( S  _D  ( x  e.  Y  |->  A ) ) )
Distinct variable groups:    ph, x    x, X    x, Y
Allowed substitution hints:    A( x)    S( x)    J( x)    K( x)

Proof of Theorem dvmptntr
StepHypRef Expression
1 dvmptntr.j . . . . . . . . 9  |-  J  =  ( Kt  S )
2 dvmptntr.k . . . . . . . . . . 11  |-  K  =  ( TopOpen ` fld )
32cnfldtopon 18292 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
4 dvmptntr.s . . . . . . . . . 10  |-  ( ph  ->  S  C_  CC )
5 resttopon 16892 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
63, 4, 5sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( Kt  S )  e.  (TopOn `  S ) )
71, 6syl5eqel 2367 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  S ) )
8 topontop 16664 . . . . . . . 8  |-  ( J  e.  (TopOn `  S
)  ->  J  e.  Top )
97, 8syl 15 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
10 dvmptntr.x . . . . . . . 8  |-  ( ph  ->  X  C_  S )
11 toponuni 16665 . . . . . . . . 9  |-  ( J  e.  (TopOn `  S
)  ->  S  =  U. J )
127, 11syl 15 . . . . . . . 8  |-  ( ph  ->  S  =  U. J
)
1310, 12sseqtrd 3214 . . . . . . 7  |-  ( ph  ->  X  C_  U. J )
14 eqid 2283 . . . . . . . 8  |-  U. J  =  U. J
1514ntridm 16805 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  C_  U. J )  ->  ( ( int `  J ) `  (
( int `  J
) `  X )
)  =  ( ( int `  J ) `
 X ) )
169, 13, 15syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( int `  J
) `  ( ( int `  J ) `  X ) )  =  ( ( int `  J
) `  X )
)
17 dvmptntr.i . . . . . . 7  |-  ( ph  ->  ( ( int `  J
) `  X )  =  Y )
1817fveq2d 5529 . . . . . 6  |-  ( ph  ->  ( ( int `  J
) `  ( ( int `  J ) `  X ) )  =  ( ( int `  J
) `  Y )
)
1916, 18eqtr3d 2317 . . . . 5  |-  ( ph  ->  ( ( int `  J
) `  X )  =  ( ( int `  J ) `  Y
) )
2019reseq2d 4955 . . . 4  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J
) `  X )
)  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Y ) ) )
21 dvmptntr.a . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
22 eqid 2283 . . . . . 6  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
2321, 22fmptd 5684 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
242, 1dvres 19261 . . . . 5  |-  ( ( ( S  C_  CC  /\  ( x  e.  X  |->  A ) : X --> CC )  /\  ( X  C_  S  /\  X  C_  S ) )  -> 
( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  X ) ) )
254, 23, 10, 10, 24syl22anc 1183 . . . 4  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  X ) ) )
2614ntrss2 16794 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  C_  U. J )  ->  ( ( int `  J ) `  X
)  C_  X )
279, 13, 26syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( int `  J
) `  X )  C_  X )
2817, 27eqsstr3d 3213 . . . . . 6  |-  ( ph  ->  Y  C_  X )
2928, 10sstrd 3189 . . . . 5  |-  ( ph  ->  Y  C_  S )
302, 1dvres 19261 . . . . 5  |-  ( ( ( S  C_  CC  /\  ( x  e.  X  |->  A ) : X --> CC )  /\  ( X  C_  S  /\  Y  C_  S ) )  -> 
( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Y ) ) )
314, 23, 10, 29, 30syl22anc 1183 . . . 4  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Y ) ) )
3220, 25, 313eqtr4d 2325 . . 3  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( S  _D  ( ( x  e.  X  |->  A )  |`  Y ) ) )
33 ssid 3197 . . . . 5  |-  X  C_  X
34 resmpt 5000 . . . . 5  |-  ( X 
C_  X  ->  (
( x  e.  X  |->  A )  |`  X )  =  ( x  e.  X  |->  A ) )
3533, 34mp1i 11 . . . 4  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  X )  =  ( x  e.  X  |->  A ) )
3635oveq2d 5874 . . 3  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  X ) )  =  ( S  _D  ( x  e.  X  |->  A ) ) )
3732, 36eqtr3d 2317 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( S  _D  ( x  e.  X  |->  A ) ) )
38 resmpt 5000 . . . 4  |-  ( Y 
C_  X  ->  (
( x  e.  X  |->  A )  |`  Y )  =  ( x  e.  Y  |->  A ) )
3928, 38syl 15 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  Y )  =  ( x  e.  Y  |->  A ) )
4039oveq2d 5874 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Y ) )  =  ( S  _D  ( x  e.  Y  |->  A ) ) )
4137, 40eqtr3d 2317 1  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( S  _D  ( x  e.  Y  |->  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   U.cuni 3827    e. cmpt 4077    |` cres 4691   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   ↾t crest 13325   TopOpenctopn 13326  ℂfldccnfld 16377   Topctop 16631  TopOnctopon 16632   intcnt 16754    _D cdv 19213
This theorem is referenced by:  rolle  19337  cmvth  19338  dvlip  19340  dvlipcn  19341  dvle  19354  dvfsumabs  19370  ftc2  19391  itgparts  19394  itgsubstlem  19395  areacirc  24931  itgsin0pilem1  27744
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-cnp 16958  df-xms 17885  df-ms 17886  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator