MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptres2 Unicode version

Theorem dvmptres2 19327
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptadd.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptadd.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptadd.da  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
dvmptres2.z  |-  ( ph  ->  Z  C_  X )
dvmptres2.j  |-  J  =  ( Kt  S )
dvmptres2.k  |-  K  =  ( TopOpen ` fld )
dvmptres2.i  |-  ( ph  ->  ( ( int `  J
) `  Z )  =  Y )
Assertion
Ref Expression
dvmptres2  |-  ( ph  ->  ( S  _D  (
x  e.  Z  |->  A ) )  =  ( x  e.  Y  |->  B ) )
Distinct variable groups:    ph, x    x, S    x, V    x, X    x, Y    x, Z
Allowed substitution hints:    A( x)    B( x)    J( x)    K( x)

Proof of Theorem dvmptres2
StepHypRef Expression
1 dvmptadd.s . . . 4  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 recnprss 19270 . . . 4  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
31, 2syl 15 . . 3  |-  ( ph  ->  S  C_  CC )
4 dvmptadd.a . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
5 eqid 2296 . . . 4  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
64, 5fmptd 5700 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
7 dvmptadd.da . . . . . 6  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
87dmeqd 4897 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  dom  ( x  e.  X  |->  B ) )
9 dvmptadd.b . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
109ralrimiva 2639 . . . . . 6  |-  ( ph  ->  A. x  e.  X  B  e.  V )
11 dmmptg 5186 . . . . . 6  |-  ( A. x  e.  X  B  e.  V  ->  dom  (
x  e.  X  |->  B )  =  X )
1210, 11syl 15 . . . . 5  |-  ( ph  ->  dom  ( x  e.  X  |->  B )  =  X )
138, 12eqtrd 2328 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  X )
14 dvbsss 19268 . . . . 5  |-  dom  ( S  _D  ( x  e.  X  |->  A ) ) 
C_  S
1514a1i 10 . . . 4  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  C_  S )
1613, 15eqsstr3d 3226 . . 3  |-  ( ph  ->  X  C_  S )
17 dvmptres2.z . . . 4  |-  ( ph  ->  Z  C_  X )
1817, 16sstrd 3202 . . 3  |-  ( ph  ->  Z  C_  S )
19 dvmptres2.k . . . 4  |-  K  =  ( TopOpen ` fld )
20 dvmptres2.j . . . 4  |-  J  =  ( Kt  S )
2119, 20dvres 19277 . . 3  |-  ( ( ( S  C_  CC  /\  ( x  e.  X  |->  A ) : X --> CC )  /\  ( X  C_  S  /\  Z  C_  S ) )  -> 
( S  _D  (
( x  e.  X  |->  A )  |`  Z ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Z ) ) )
223, 6, 16, 18, 21syl22anc 1183 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Z ) )  =  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J ) `  Z ) ) )
23 resmpt 5016 . . . 4  |-  ( Z 
C_  X  ->  (
( x  e.  X  |->  A )  |`  Z )  =  ( x  e.  Z  |->  A ) )
2417, 23syl 15 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  A )  |`  Z )  =  ( x  e.  Z  |->  A ) )
2524oveq2d 5890 . 2  |-  ( ph  ->  ( S  _D  (
( x  e.  X  |->  A )  |`  Z ) )  =  ( S  _D  ( x  e.  Z  |->  A ) ) )
267reseq1d 4970 . . 3  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J
) `  Z )
)  =  ( ( x  e.  X  |->  B )  |`  ( ( int `  J ) `  Z ) ) )
27 dvmptres2.i . . . 4  |-  ( ph  ->  ( ( int `  J
) `  Z )  =  Y )
2827reseq2d 4971 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  B )  |`  ( ( int `  J
) `  Z )
)  =  ( ( x  e.  X  |->  B )  |`  Y )
)
2919cnfldtopon 18308 . . . . . . . . . 10  |-  K  e.  (TopOn `  CC )
30 resttopon 16908 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
3129, 3, 30sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( Kt  S )  e.  (TopOn `  S ) )
3220, 31syl5eqel 2380 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  S ) )
33 topontop 16680 . . . . . . . 8  |-  ( J  e.  (TopOn `  S
)  ->  J  e.  Top )
3432, 33syl 15 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
35 toponuni 16681 . . . . . . . . 9  |-  ( J  e.  (TopOn `  S
)  ->  S  =  U. J )
3632, 35syl 15 . . . . . . . 8  |-  ( ph  ->  S  =  U. J
)
3718, 36sseqtrd 3227 . . . . . . 7  |-  ( ph  ->  Z  C_  U. J )
38 eqid 2296 . . . . . . . 8  |-  U. J  =  U. J
3938ntrss2 16810 . . . . . . 7  |-  ( ( J  e.  Top  /\  Z  C_  U. J )  ->  ( ( int `  J ) `  Z
)  C_  Z )
4034, 37, 39syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( int `  J
) `  Z )  C_  Z )
4127, 40eqsstr3d 3226 . . . . 5  |-  ( ph  ->  Y  C_  Z )
4241, 17sstrd 3202 . . . 4  |-  ( ph  ->  Y  C_  X )
43 resmpt 5016 . . . 4  |-  ( Y 
C_  X  ->  (
( x  e.  X  |->  B )  |`  Y )  =  ( x  e.  Y  |->  B ) )
4442, 43syl 15 . . 3  |-  ( ph  ->  ( ( x  e.  X  |->  B )  |`  Y )  =  ( x  e.  Y  |->  B ) )
4526, 28, 443eqtrd 2332 . 2  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) )  |`  ( ( int `  J
) `  Z )
)  =  ( x  e.  Y  |->  B ) )
4622, 25, 453eqtr3d 2336 1  |-  ( ph  ->  ( S  _D  (
x  e.  Z  |->  A ) )  =  ( x  e.  Y  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   {cpr 3654   U.cuni 3843    e. cmpt 4093   dom cdm 4705    |` cres 4707   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   ↾t crest 13341   TopOpenctopn 13342  ℂfldccnfld 16393   Topctop 16647  TopOnctopon 16648   intcnt 16770    _D cdv 19229
This theorem is referenced by:  dvmptres  19328  dvmptcmul  19329  rolle  19353  mvth  19355  taylthlem1  19768  pige3  19901  logccv  20026  lhe4.4ex1a  27649  itgsinexplem1  27851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-fz 10799  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-rest 13343  df-topn 13344  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-cnp 16974  df-xms 17901  df-ms 17902  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator