MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvne0 Unicode version

Theorem dvne0 19755
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvne0.a  |-  ( ph  ->  A  e.  RR )
dvne0.b  |-  ( ph  ->  B  e.  RR )
dvne0.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
dvne0.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
dvne0.z  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
Assertion
Ref Expression
dvne0  |-  ( ph  ->  ( F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F )  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )

Proof of Theorem dvne0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvne0.z . . . . . . . . . . . 12  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
2 eleq1 2440 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  e.  ran  ( RR  _D  F )  <->  0  e.  ran  ( RR  _D  F
) ) )
32notbid 286 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( -.  x  e.  ran  ( RR  _D  F
)  <->  -.  0  e.  ran  ( RR  _D  F
) ) )
41, 3syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ph  ->  ( x  =  0  ->  -.  x  e.  ran  ( RR  _D  F
) ) )
54necon2ad 2591 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  ->  x  =/=  0 ) )
65imp 419 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  x  =/=  0 )
7 dvne0.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
8 cncff 18787 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
97, 8syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
10 dvne0.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
11 dvne0.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR )
12 iccssre 10917 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1310, 11, 12syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
14 dvfre 19697 . . . . . . . . . . . . . 14  |-  ( ( F : ( A [,] B ) --> RR 
/\  ( A [,] B )  C_  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR )
159, 13, 14syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
16 frn 5530 . . . . . . . . . . . . 13  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> RR 
->  ran  ( RR  _D  F )  C_  RR )
1715, 16syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ran  ( RR  _D  F )  C_  RR )
1817sselda 3284 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  x  e.  RR )
19 0re 9017 . . . . . . . . . . 11  |-  0  e.  RR
20 lttri2 9083 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  0  e.  RR )  ->  ( x  =/=  0  <->  ( x  <  0  \/  0  <  x ) ) )
2118, 19, 20sylancl 644 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
x  =/=  0  <->  (
x  <  0  \/  0  <  x ) ) )
22 0xr 9057 . . . . . . . . . . . . . 14  |-  0  e.  RR*
23 elioomnf 10924 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR*  ->  ( x  e.  (  -oo (,) 0 )  <->  ( x  e.  RR  /\  x  <  0 ) ) )
2422, 23ax-mp 8 . . . . . . . . . . . . 13  |-  ( x  e.  (  -oo (,) 0 )  <->  ( x  e.  RR  /\  x  <  0 ) )
2524baib 872 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  e.  (  -oo (,) 0 )  <->  x  <  0 ) )
26 elrp 10539 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
2726baib 872 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  e.  RR+  <->  0  <  x ) )
2825, 27orbi12d 691 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  e.  ( 
-oo (,) 0 )  \/  x  e.  RR+ )  <->  ( x  <  0  \/  0  <  x ) ) )
2918, 28syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
( x  e.  ( 
-oo (,) 0 )  \/  x  e.  RR+ )  <->  ( x  <  0  \/  0  <  x ) ) )
3021, 29bitr4d 248 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
x  =/=  0  <->  (
x  e.  (  -oo (,) 0 )  \/  x  e.  RR+ ) ) )
316, 30mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  (
x  e.  (  -oo (,) 0 )  \/  x  e.  RR+ ) )
32 elun 3424 . . . . . . . 8  |-  ( x  e.  ( (  -oo (,) 0 )  u.  RR+ ) 
<->  ( x  e.  ( 
-oo (,) 0 )  \/  x  e.  RR+ )
)
3331, 32sylibr 204 . . . . . . 7  |-  ( (
ph  /\  x  e.  ran  ( RR  _D  F
) )  ->  x  e.  ( (  -oo (,) 0 )  u.  RR+ ) )
3433ex 424 . . . . . 6  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  ->  x  e.  ( (  -oo (,) 0 )  u.  RR+ ) ) )
3534ssrdv 3290 . . . . 5  |-  ( ph  ->  ran  ( RR  _D  F )  C_  (
(  -oo (,) 0 )  u.  RR+ ) )
36 disjssun 3621 . . . . 5  |-  ( ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0 ) )  =  (/)  ->  ( ran  ( RR  _D  F
)  C_  ( (  -oo (,) 0 )  u.  RR+ )  <->  ran  ( RR  _D  F )  C_  RR+ )
)
3735, 36syl5ibcom 212 . . . 4  |-  ( ph  ->  ( ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0
) )  =  (/)  ->  ran  ( RR  _D  F )  C_  RR+ )
)
3837imp 419 . . 3  |-  ( (
ph  /\  ( ran  ( RR  _D  F
)  i^i  (  -oo (,) 0 ) )  =  (/) )  ->  ran  ( RR  _D  F )  C_  RR+ )
3910adantr 452 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  A  e.  RR )
4011adantr 452 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  B  e.  RR )
417adantr 452 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
42 dvne0.d . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
4342feq2d 5514 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> RR  <->  ( RR  _D  F ) : ( A (,) B ) --> RR ) )
4415, 43mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> RR )
45 ffn 5524 . . . . . . . 8  |-  ( ( RR  _D  F ) : ( A (,) B ) --> RR  ->  ( RR  _D  F )  Fn  ( A (,) B ) )
4644, 45syl 16 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
)  Fn  ( A (,) B ) )
4746anim1i 552 . . . . . 6  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  ( ( RR  _D  F )  Fn  ( A (,) B
)  /\  ran  ( RR 
_D  F )  C_  RR+ ) )
48 df-f 5391 . . . . . 6  |-  ( ( RR  _D  F ) : ( A (,) B ) --> RR+  <->  ( ( RR  _D  F )  Fn  ( A (,) B
)  /\  ran  ( RR 
_D  F )  C_  RR+ ) )
4947, 48sylibr 204 . . . . 5  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  ( RR  _D  F ) : ( A (,) B ) -->
RR+ )
5039, 40, 41, 49dvgt0 19748 . . . 4  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F ) )
5150orcd 382 . . 3  |-  ( (
ph  /\  ran  ( RR 
_D  F )  C_  RR+ )  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
5238, 51syldan 457 . 2  |-  ( (
ph  /\  ( ran  ( RR  _D  F
)  i^i  (  -oo (,) 0 ) )  =  (/) )  ->  ( F 
Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
53 n0 3573 . . . 4  |-  ( ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0 ) )  =/=  (/)  <->  E. x  x  e.  ( ran  ( RR 
_D  F )  i^i  (  -oo (,) 0
) ) )
54 elin 3466 . . . . . 6  |-  ( x  e.  ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0
) )  <->  ( x  e.  ran  ( RR  _D  F )  /\  x  e.  (  -oo (,) 0
) ) )
55 fvelrnb 5706 . . . . . . . . 9  |-  ( ( RR  _D  F )  Fn  ( A (,) B )  ->  (
x  e.  ran  ( RR  _D  F )  <->  E. y  e.  ( A (,) B
) ( ( RR 
_D  F ) `  y )  =  x ) )
5646, 55syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  <->  E. y  e.  ( A (,) B ) ( ( RR  _D  F ) `  y
)  =  x ) )
5710adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  A  e.  RR )
5811adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  B  e.  RR )
597adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
6046adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  ( RR  _D  F )  Fn  ( A (,) B ) )
6144adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  ( RR  _D  F ) : ( A (,) B ) --> RR )
6261ffvelrnda 5802 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  RR )
631ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  -.  0  e.  ran  ( RR  _D  F ) )
64 simplrl 737 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  y  e.  ( A (,) B
) )
65 simprl 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  z  e.  ( A (,) B
) )
66 ioossicc 10921 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A (,) B )  C_  ( A [,] B )
67 rescncf 18791 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A (,) B ) 
C_  ( A [,] B )  ->  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  ( F  |`  ( A (,) B
) )  e.  ( ( A (,) B
) -cn-> RR ) ) )
6866, 7, 67mpsyl 61 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> RR ) )
6968ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> RR ) )
70 ax-resscn 8973 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  RR  C_  CC
7170a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  RR  C_  CC )
72 fss 5532 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
739, 70, 72sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  F : ( A [,] B ) --> CC )
7466, 13syl5ss 3295 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( A (,) B
)  C_  RR )
75 eqid 2380 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
7675tgioo2 18698 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
7775, 76dvres 19658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( RR  C_  CC  /\  F : ( A [,] B ) --> CC )  /\  ( ( A [,] B ) 
C_  RR  /\  ( A (,) B )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A (,) B ) ) ) )
7871, 73, 13, 74, 77syl22anc 1185 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) ) )
79 retop 18659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( topGen ` 
ran  (,) )  e.  Top
80 iooretop 18664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
81 isopn3i 17062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A (,) B )  e.  ( topGen `  ran  (,) )
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A (,) B ) )  =  ( A (,) B ) )
8279, 80, 81mp2an 654 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A (,) B ) )  =  ( A (,) B )
8382reseq2i 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( RR  _D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) B ) )
84 fnresdm 5487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( RR  _D  F )  Fn  ( A (,) B )  ->  (
( RR  _D  F
)  |`  ( A (,) B ) )  =  ( RR  _D  F
) )
8546, 84syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  =  ( RR  _D  F ) )
8683, 85syl5eq 2424 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A (,) B ) ) )  =  ( RR  _D  F ) )
8778, 86eqtrd 2412 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( RR  _D  F ) )
8887dmeqd 5005 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  dom  ( RR  _D  F ) )
8988, 42eqtrd 2412 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( A (,) B ) )
9089ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  dom  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( A (,) B ) )
9164, 65, 69, 90dvivth 19754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  ( F  |`  ( A (,) B ) ) ) `  y ) [,] ( ( RR 
_D  ( F  |`  ( A (,) B ) ) ) `  z
) )  C_  ran  ( RR  _D  ( F  |`  ( A (,) B ) ) ) )
9287ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ( RR  _D  F ) )
9392fveq1d 5663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  ( F  |`  ( A (,) B ) ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
9492fveq1d 5663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  ( F  |`  ( A (,) B ) ) ) `
 z )  =  ( ( RR  _D  F ) `  z
) )
9593, 94oveq12d 6031 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  ( F  |`  ( A (,) B ) ) ) `  y ) [,] ( ( RR 
_D  ( F  |`  ( A (,) B ) ) ) `  z
) )  =  ( ( ( RR  _D  F ) `  y
) [,] ( ( RR  _D  F ) `
 z ) ) )
9692rneqd 5030 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  ran  ( RR  _D  ( F  |`  ( A (,) B ) ) )  =  ran  ( RR 
_D  F ) )
9791, 95, 963sstr3d 3326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  F ) `  y
) [,] ( ( RR  _D  F ) `
 z ) ) 
C_  ran  ( RR  _D  F ) )
9819a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  e.  RR )
99 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  e.  (  -oo (,) 0
) )
100 elioomnf 10924 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  RR*  ->  ( ( ( RR  _D  F
) `  y )  e.  (  -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 y )  e.  RR  /\  ( ( RR  _D  F ) `
 y )  <  0 ) ) )
10122, 100ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( RR  _D  F
) `  y )  e.  (  -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 y )  e.  RR  /\  ( ( RR  _D  F ) `
 y )  <  0 ) )
10299, 101sylib 189 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  F ) `  y
)  e.  RR  /\  ( ( RR  _D  F ) `  y
)  <  0 ) )
103102simprd 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  <  0 )
104102simpld 446 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  e.  RR )
105 ltle 9089 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( RR  _D  F ) `  y
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( RR 
_D  F ) `  y )  <  0  ->  ( ( RR  _D  F ) `  y
)  <_  0 ) )
106104, 19, 105sylancl 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( ( RR  _D  F ) `  y
)  <  0  ->  ( ( RR  _D  F
) `  y )  <_  0 ) )
107103, 106mpd 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  y )  <_  0 )
108 simprr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  <_  ( ( RR  _D  F ) `  z
) )
10965, 62syldan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
( RR  _D  F
) `  z )  e.  RR )
110 elicc2 10900 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( RR  _D  F ) `  y
)  e.  RR  /\  ( ( RR  _D  F ) `  z
)  e.  RR )  ->  ( 0  e.  ( ( ( RR 
_D  F ) `  y ) [,] (
( RR  _D  F
) `  z )
)  <->  ( 0  e.  RR  /\  ( ( RR  _D  F ) `
 y )  <_ 
0  /\  0  <_  ( ( RR  _D  F
) `  z )
) ) )
111104, 109, 110syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  (
0  e.  ( ( ( RR  _D  F
) `  y ) [,] ( ( RR  _D  F ) `  z
) )  <->  ( 0  e.  RR  /\  (
( RR  _D  F
) `  y )  <_  0  /\  0  <_ 
( ( RR  _D  F ) `  z
) ) ) )
11298, 107, 108, 111mpbir3and 1137 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  e.  ( ( ( RR 
_D  F ) `  y ) [,] (
( RR  _D  F
) `  z )
) )
11397, 112sseldd 3285 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  ( z  e.  ( A (,) B
)  /\  0  <_  ( ( RR  _D  F
) `  z )
) )  ->  0  e.  ran  ( RR  _D  F ) )
114113expr 599 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( 0  <_  ( ( RR 
_D  F ) `  z )  ->  0  e.  ran  ( RR  _D  F ) ) )
11563, 114mtod 170 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  -.  0  <_  ( ( RR  _D  F ) `  z
) )
116 ltnle 9081 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( RR  _D  F ) `  z
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( RR 
_D  F ) `  z )  <  0  <->  -.  0  <_  ( ( RR  _D  F ) `  z ) ) )
11762, 19, 116sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  z )  <  0  <->  -.  0  <_  ( ( RR  _D  F
) `  z )
) )
118115, 117mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  <  0
)
119 elioomnf 10924 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  RR*  ->  ( ( ( RR  _D  F
) `  z )  e.  (  -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 z )  e.  RR  /\  ( ( RR  _D  F ) `
 z )  <  0 ) ) )
12022, 119ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( ( RR  _D  F
) `  z )  e.  (  -oo (,) 0
)  <->  ( ( ( RR  _D  F ) `
 z )  e.  RR  /\  ( ( RR  _D  F ) `
 z )  <  0 ) )
12162, 118, 120sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
y  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 ) ) )  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  ( 
-oo (,) 0 ) )
122121ralrimiva 2725 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  A. z  e.  ( A (,) B
) ( ( RR 
_D  F ) `  z )  e.  ( 
-oo (,) 0 ) )
123 ffnfv 5826 . . . . . . . . . . . . . 14  |-  ( ( RR  _D  F ) : ( A (,) B ) --> (  -oo (,) 0 )  <->  ( ( RR  _D  F )  Fn  ( A (,) B
)  /\  A. z  e.  ( A (,) B
) ( ( RR 
_D  F ) `  z )  e.  ( 
-oo (,) 0 ) ) )
12460, 122, 123sylanbrc 646 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  ( RR  _D  F ) : ( A (,) B ) --> (  -oo (,) 0
) )
12557, 58, 59, 124dvlt0 19749 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) )
126125olcd 383 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A (,) B
)  /\  ( ( RR  _D  F ) `  y )  e.  ( 
-oo (,) 0 ) ) )  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
127126expr 599 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  y )  e.  (  -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
128 eleq1 2440 . . . . . . . . . . 11  |-  ( ( ( RR  _D  F
) `  y )  =  x  ->  ( ( ( RR  _D  F
) `  y )  e.  (  -oo (,) 0
)  <->  x  e.  (  -oo (,) 0 ) ) )
129128imbi1d 309 . . . . . . . . . 10  |-  ( ( ( RR  _D  F
) `  y )  =  x  ->  ( ( ( ( RR  _D  F ) `  y
)  e.  (  -oo (,) 0 )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )  <->  ( x  e.  (  -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
130127, 129syl5ibcom 212 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  y )  =  x  ->  ( x  e.  (  -oo (,) 0 )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
131130rexlimdva 2766 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  ( A (,) B
) ( ( RR 
_D  F ) `  y )  =  x  ->  ( x  e.  (  -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
13256, 131sylbid 207 . . . . . . 7  |-  ( ph  ->  ( x  e.  ran  ( RR  _D  F
)  ->  ( x  e.  (  -oo (,) 0
)  ->  ( F  Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) ) )
133132imp3a 421 . . . . . 6  |-  ( ph  ->  ( ( x  e. 
ran  ( RR  _D  F )  /\  x  e.  (  -oo (,) 0
) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
13454, 133syl5bi 209 . . . . 5  |-  ( ph  ->  ( x  e.  ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0 ) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F )  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
135134exlimdv 1643 . . . 4  |-  ( ph  ->  ( E. x  x  e.  ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0
) )  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
13653, 135syl5bi 209 . . 3  |-  ( ph  ->  ( ( ran  ( RR  _D  F )  i^i  (  -oo (,) 0
) )  =/=  (/)  ->  ( F  Isom  <  ,  <  ( ( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) ) )
137136imp 419 . 2  |-  ( (
ph  /\  ( ran  ( RR  _D  F
)  i^i  (  -oo (,) 0 ) )  =/=  (/) )  ->  ( F 
Isom  <  ,  <  (
( A [,] B
) ,  ran  F
)  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
13852, 137pm2.61dane 2621 1  |-  ( ph  ->  ( F  Isom  <  ,  <  ( ( A [,] B ) ,  ran  F )  \/  F  Isom  <  ,  `'  <  ( ( A [,] B ) ,  ran  F ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643    u. cun 3254    i^i cin 3255    C_ wss 3256   (/)c0 3564   class class class wbr 4146   `'ccnv 4810   dom cdm 4811   ran crn 4812    |` cres 4813    Fn wfn 5382   -->wf 5383   ` cfv 5387    Isom wiso 5388  (class class class)co 6013   CCcc 8914   RRcr 8915   0cc0 8916    -oocmnf 9044   RR*cxr 9045    < clt 9046    <_ cle 9047   RR+crp 10537   (,)cioo 10841   [,]cicc 10844   TopOpenctopn 13569   topGenctg 13585  ℂfldccnfld 16619   Topctop 16874   intcnt 16997   -cn->ccncf 18770    _D cdv 19610
This theorem is referenced by:  dvne0f1  19756  dvcnvrelem1  19761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-hom 13473  df-cco 13474  df-rest 13570  df-topn 13571  df-topgen 13587  df-pt 13588  df-prds 13591  df-xrs 13646  df-0g 13647  df-gsum 13648  df-qtop 13653  df-imas 13654  df-xps 13656  df-mre 13731  df-mrc 13732  df-acs 13734  df-mnd 14610  df-submnd 14659  df-mulg 14735  df-cntz 15036  df-cmn 15334  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-cnfld 16620  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-ntr 17000  df-cls 17001  df-nei 17078  df-lp 17116  df-perf 17117  df-cn 17206  df-cnp 17207  df-haus 17294  df-cmp 17365  df-tx 17508  df-hmeo 17701  df-fil 17792  df-fm 17884  df-flim 17885  df-flf 17886  df-xms 18252  df-ms 18253  df-tms 18254  df-cncf 18772  df-limc 19613  df-dv 19614
  Copyright terms: Public domain W3C validator