MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvradcnv Unicode version

Theorem dvradcnv 19797
Description: The radius of convergence of the (formal) derivative  H of the power series  G is at least as large as the radius of convergence of  G. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
dvradcnv.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
dvradcnv.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
dvradcnv.h  |-  H  =  ( n  e.  NN0  |->  ( ( ( n  +  1 )  x.  ( A `  (
n  +  1 ) ) )  x.  ( X ^ n ) ) )
dvradcnv.a  |-  ( ph  ->  A : NN0 --> CC )
dvradcnv.x  |-  ( ph  ->  X  e.  CC )
dvradcnv.l  |-  ( ph  ->  ( abs `  X
)  <  R )
Assertion
Ref Expression
dvradcnv  |-  ( ph  ->  seq  0 (  +  ,  H )  e. 
dom 
~~>  )
Distinct variable groups:    x, n, A    G, r    n, r, X, x
Allowed substitution hints:    ph( x, n, r)    A( r)    R( x, n, r)    G( x, n)    H( x, n, r)

Proof of Theorem dvradcnv
Dummy variables  k 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10262 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 1nn0 9981 . . 3  |-  1  e.  NN0
32a1i 10 . 2  |-  ( ph  ->  1  e.  NN0 )
4 ax-1cn 8795 . . . . 5  |-  1  e.  CC
5 nn0cn 9975 . . . . . 6  |-  ( k  e.  NN0  ->  k  e.  CC )
65adantl 452 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  CC )
7 nn0ex 9971 . . . . . . 7  |-  NN0  e.  _V
87mptex 5746 . . . . . 6  |-  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  e. 
_V
98shftval4 11572 . . . . 5  |-  ( ( 1  e.  CC  /\  k  e.  CC )  ->  ( ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) `  k
)  =  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( 1  +  k ) ) )
104, 6, 9sylancr 644 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) )  shift  -u 1 ) `
 k )  =  ( ( i  e. 
NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( 1  +  k ) ) )
11 addcom 8998 . . . . . 6  |-  ( ( 1  e.  CC  /\  k  e.  CC )  ->  ( 1  +  k )  =  ( k  +  1 ) )
124, 6, 11sylancr 644 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  +  k )  =  ( k  +  1 ) )
1312fveq2d 5529 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( 1  +  k ) )  =  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) `  ( k  +  1 ) ) )
14 peano2nn0 10004 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
1514adantl 452 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  +  1 )  e. 
NN0 )
16 id 19 . . . . . . . 8  |-  ( i  =  ( k  +  1 )  ->  i  =  ( k  +  1 ) )
17 fveq2 5525 . . . . . . . . 9  |-  ( i  =  ( k  +  1 )  ->  (
( G `  X
) `  i )  =  ( ( G `
 X ) `  ( k  +  1 ) ) )
1817fveq2d 5529 . . . . . . . 8  |-  ( i  =  ( k  +  1 )  ->  ( abs `  ( ( G `
 X ) `  i ) )  =  ( abs `  (
( G `  X
) `  ( k  +  1 ) ) ) )
1916, 18oveq12d 5876 . . . . . . 7  |-  ( i  =  ( k  +  1 )  ->  (
i  x.  ( abs `  ( ( G `  X ) `  i
) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( G `
 X ) `  ( k  +  1 ) ) ) ) )
20 eqid 2283 . . . . . . 7  |-  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  =  ( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) )
21 ovex 5883 . . . . . . 7  |-  ( ( k  +  1 )  x.  ( abs `  (
( G `  X
) `  ( k  +  1 ) ) ) )  e.  _V
2219, 20, 21fvmpt 5602 . . . . . 6  |-  ( ( k  +  1 )  e.  NN0  ->  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( k  +  1 ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( G `  X ) `  (
k  +  1 ) ) ) ) )
2315, 22syl 15 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( k  +  1 ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( G `  X ) `  (
k  +  1 ) ) ) ) )
24 dvradcnv.x . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
25 dvradcnv.g . . . . . . . . 9  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
2625pserval2 19787 . . . . . . . 8  |-  ( ( X  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( ( G `  X ) `  (
k  +  1 ) )  =  ( ( A `  ( k  +  1 ) )  x.  ( X ^
( k  +  1 ) ) ) )
2724, 14, 26syl2an 463 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  X ) `  ( k  +  1 ) )  =  ( ( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) )
2827fveq2d 5529 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( G `  X ) `  (
k  +  1 ) ) )  =  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^
( k  +  1 ) ) ) ) )
2928oveq2d 5874 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  +  1 )  x.  ( abs `  (
( G `  X
) `  ( k  +  1 ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )
3023, 29eqtrd 2315 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( k  +  1 ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )
3110, 13, 303eqtrd 2319 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) )  shift  -u 1 ) `
 k )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )
3215nn0red 10019 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  RR )
33 dvradcnv.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
34 ffvelrn 5663 . . . . . . 7  |-  ( ( A : NN0 --> CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( A `  (
k  +  1 ) )  e.  CC )
3533, 14, 34syl2an 463 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  ( k  +  1 ) )  e.  CC )
36 expcl 11121 . . . . . . 7  |-  ( ( X  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( X ^ (
k  +  1 ) )  e.  CC )
3724, 14, 36syl2an 463 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( X ^ ( k  +  1 ) )  e.  CC )
3835, 37mulcld 8855 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A `  ( k  +  1 ) )  x.  ( X ^
( k  +  1 ) ) )  e.  CC )
3938abscld 11918 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) )  e.  RR )
4032, 39remulcld 8863 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) )  e.  RR )
4131, 40eqeltrd 2357 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) )  shift  -u 1 ) `
 k )  e.  RR )
42 oveq1 5865 . . . . . . 7  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
4342fveq2d 5529 . . . . . . 7  |-  ( n  =  k  ->  ( A `  ( n  +  1 ) )  =  ( A `  ( k  +  1 ) ) )
4442, 43oveq12d 5876 . . . . . 6  |-  ( n  =  k  ->  (
( n  +  1 )  x.  ( A `
 ( n  + 
1 ) ) )  =  ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) ) )
45 oveq2 5866 . . . . . 6  |-  ( n  =  k  ->  ( X ^ n )  =  ( X ^ k
) )
4644, 45oveq12d 5876 . . . . 5  |-  ( n  =  k  ->  (
( ( n  + 
1 )  x.  ( A `  ( n  +  1 ) ) )  x.  ( X ^ n ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )
47 dvradcnv.h . . . . 5  |-  H  =  ( n  e.  NN0  |->  ( ( ( n  +  1 )  x.  ( A `  (
n  +  1 ) ) )  x.  ( X ^ n ) ) )
48 ovex 5883 . . . . 5  |-  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( X ^
k ) )  e. 
_V
4946, 47, 48fvmpt 5602 . . . 4  |-  ( k  e.  NN0  ->  ( H `
 k )  =  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )
5049adantl 452 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) ) )
5115nn0cnd 10020 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  CC )
5251, 35mulcld 8855 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  e.  CC )
53 expcl 11121 . . . . 5  |-  ( ( X  e.  CC  /\  k  e.  NN0 )  -> 
( X ^ k
)  e.  CC )
5424, 53sylan 457 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( X ^ k )  e.  CC )
5552, 54mulcld 8855 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( X ^
k ) )  e.  CC )
5650, 55eqeltrd 2357 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  e.  CC )
57 dvradcnv.r . . . . . . . 8  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
58 dvradcnv.l . . . . . . . 8  |-  ( ph  ->  ( abs `  X
)  <  R )
59 id 19 . . . . . . . . . 10  |-  ( i  =  k  ->  i  =  k )
60 fveq2 5525 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( G `  X
) `  i )  =  ( ( G `
 X ) `  k ) )
6160fveq2d 5529 . . . . . . . . . 10  |-  ( i  =  k  ->  ( abs `  ( ( G `
 X ) `  i ) )  =  ( abs `  (
( G `  X
) `  k )
) )
6259, 61oveq12d 5876 . . . . . . . . 9  |-  ( i  =  k  ->  (
i  x.  ( abs `  ( ( G `  X ) `  i
) ) )  =  ( k  x.  ( abs `  ( ( G `
 X ) `  k ) ) ) )
6362cbvmptv 4111 . . . . . . . 8  |-  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  =  ( k  e.  NN0  |->  ( k  x.  ( abs `  ( ( G `
 X ) `  k ) ) ) )
6425, 33, 57, 24, 58, 63radcnvlt1 19794 . . . . . . 7  |-  ( ph  ->  (  seq  0 (  +  ,  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) )  e.  dom  ~~>  /\  seq  0 (  +  , 
( abs  o.  ( G `  X )
) )  e.  dom  ~~>  ) )
6564simpld 445 . . . . . 6  |-  ( ph  ->  seq  0 (  +  ,  ( i  e. 
NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) )  e.  dom  ~~>  )
66 climdm 12028 . . . . . 6  |-  (  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) )  e.  dom  ~~>  <->  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) )  ~~>  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) ) )
6765, 66sylib 188 . . . . 5  |-  ( ph  ->  seq  0 (  +  ,  ( i  e. 
NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) )  ~~>  (  ~~>  `  seq  0
(  +  ,  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) ) ) )
68 0z 10035 . . . . . 6  |-  0  e.  ZZ
69 1z 10053 . . . . . . 7  |-  1  e.  ZZ
70 znegcl 10055 . . . . . . 7  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
7169, 70ax-mp 8 . . . . . 6  |-  -u 1  e.  ZZ
728isershft 12137 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  (  seq  0
(  +  ,  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) )  ~~>  (  ~~>  `  seq  0
(  +  ,  ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) ) )  <->  seq  ( 0  + 
-u 1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  ~~>  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) ) ) )
7368, 71, 72mp2an 653 . . . . 5  |-  (  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) )  ~~>  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) )  <->  seq  ( 0  +  -u 1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  ~~>  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) ) )
7467, 73sylib 188 . . . 4  |-  ( ph  ->  seq  ( 0  + 
-u 1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  ~~>  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) ) )
75 seqex 11048 . . . . 5  |-  seq  (
0  +  -u 1
) (  +  , 
( ( i  e. 
NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  e. 
_V
76 fvex 5539 . . . . 5  |-  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) )  e. 
_V
7775, 76breldm 4883 . . . 4  |-  (  seq  ( 0  +  -u
1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  ~~>  (  ~~>  `  seq  0 (  +  , 
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) ) )  ->  seq  ( 0  +  -u
1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  e. 
dom 
~~>  )
7874, 77syl 15 . . 3  |-  ( ph  ->  seq  ( 0  + 
-u 1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  e. 
dom 
~~>  )
79 eqid 2283 . . . 4  |-  ( ZZ>= `  ( 0  +  -u
1 ) )  =  ( ZZ>= `  ( 0  +  -u 1 ) )
80 neg1cn 9813 . . . . . . . 8  |-  -u 1  e.  CC
8180addid2i 9000 . . . . . . 7  |-  ( 0  +  -u 1 )  = 
-u 1
82 0le1 9297 . . . . . . . 8  |-  0  <_  1
83 1re 8837 . . . . . . . . 9  |-  1  e.  RR
84 le0neg2 9283 . . . . . . . . 9  |-  ( 1  e.  RR  ->  (
0  <_  1  <->  -u 1  <_ 
0 ) )
8583, 84ax-mp 8 . . . . . . . 8  |-  ( 0  <_  1  <->  -u 1  <_ 
0 )
8682, 85mpbi 199 . . . . . . 7  |-  -u 1  <_  0
8781, 86eqbrtri 4042 . . . . . 6  |-  ( 0  +  -u 1 )  <_ 
0
8881, 71eqeltri 2353 . . . . . . 7  |-  ( 0  +  -u 1 )  e.  ZZ
8988eluz1i 10237 . . . . . 6  |-  ( 0  e.  ( ZZ>= `  (
0  +  -u 1
) )  <->  ( 0  e.  ZZ  /\  (
0  +  -u 1
)  <_  0 ) )
9068, 87, 89mpbir2an 886 . . . . 5  |-  0  e.  ( ZZ>= `  ( 0  +  -u 1 ) )
9190a1i 10 . . . 4  |-  ( ph  ->  0  e.  ( ZZ>= `  ( 0  +  -u
1 ) ) )
92 eluzelz 10238 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  (
0  +  -u 1
) )  ->  k  e.  ZZ )
9392zcnd 10118 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  (
0  +  -u 1
) )  ->  k  e.  CC )
9493adantl 452 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  +  -u 1 ) ) )  ->  k  e.  CC )
954, 94, 9sylancr 644 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  +  -u 1 ) ) )  ->  ( (
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) )  shift  -u 1 ) `
 k )  =  ( ( i  e. 
NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( 1  +  k ) ) )
96 nn0re 9974 . . . . . . . . . 10  |-  ( i  e.  NN0  ->  i  e.  RR )
9796adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  RR )
9825, 33, 24psergf 19788 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  X
) : NN0 --> CC )
99 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( ( G `  X
) : NN0 --> CC  /\  i  e.  NN0 )  -> 
( ( G `  X ) `  i
)  e.  CC )
10098, 99sylan 457 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( ( G `  X ) `  i )  e.  CC )
101100abscld 11918 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( abs `  ( ( G `  X ) `  i
) )  e.  RR )
10297, 101remulcld 8863 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) )  e.  RR )
103102recnd 8861 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) )  e.  CC )
104103, 20fmptd 5684 . . . . . 6  |-  ( ph  ->  ( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) : NN0 --> CC )
1054, 93, 11sylancr 644 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  (
0  +  -u 1
) )  ->  (
1  +  k )  =  ( k  +  1 ) )
106 eluzp1p1 10253 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  (
0  +  -u 1
) )  ->  (
k  +  1 )  e.  ( ZZ>= `  (
( 0  +  -u
1 )  +  1 ) ) )
10781oveq1i 5868 . . . . . . . . . . 11  |-  ( ( 0  +  -u 1
)  +  1 )  =  ( -u 1  +  1 )
1084negidi 9115 . . . . . . . . . . . 12  |-  ( 1  +  -u 1 )  =  0
1094, 80, 108addcomli 9004 . . . . . . . . . . 11  |-  ( -u
1  +  1 )  =  0
110107, 109eqtri 2303 . . . . . . . . . 10  |-  ( ( 0  +  -u 1
)  +  1 )  =  0
111110fveq2i 5528 . . . . . . . . 9  |-  ( ZZ>= `  ( ( 0  + 
-u 1 )  +  1 ) )  =  ( ZZ>= `  0 )
1121, 111eqtr4i 2306 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  ( (
0  +  -u 1
)  +  1 ) )
113106, 112syl6eleqr 2374 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  (
0  +  -u 1
) )  ->  (
k  +  1 )  e.  NN0 )
114105, 113eqeltrd 2357 . . . . . 6  |-  ( k  e.  ( ZZ>= `  (
0  +  -u 1
) )  ->  (
1  +  k )  e.  NN0 )
115 ffvelrn 5663 . . . . . 6  |-  ( ( ( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) ) : NN0 --> CC  /\  ( 1  +  k )  e.  NN0 )  ->  ( ( i  e. 
NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( 1  +  k ) )  e.  CC )
116104, 114, 115syl2an 463 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  +  -u 1 ) ) )  ->  ( (
i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) ) `  ( 1  +  k ) )  e.  CC )
11795, 116eqeltrd 2357 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  +  -u 1 ) ) )  ->  ( (
( i  e.  NN0  |->  ( i  x.  ( abs `  ( ( G `
 X ) `  i ) ) ) )  shift  -u 1 ) `
 k )  e.  CC )
11879, 91, 117iserex 12130 . . 3  |-  ( ph  ->  (  seq  ( 0  +  -u 1 ) (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  e. 
dom 
~~> 
<->  seq  0 (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  e. 
dom 
~~>  ) )
11978, 118mpbid 201 . 2  |-  ( ph  ->  seq  0 (  +  ,  ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) )  e. 
dom 
~~>  )
12083a1i 10 . . 3  |-  ( (
ph  /\  X  = 
0 )  ->  1  e.  RR )
121 df-ne 2448 . . . . . 6  |-  ( X  =/=  0  <->  -.  X  =  0 )
122121biimpri 197 . . . . 5  |-  ( -.  X  =  0  ->  X  =/=  0 )
123 absrpcl 11773 . . . . 5  |-  ( ( X  e.  CC  /\  X  =/=  0 )  -> 
( abs `  X
)  e.  RR+ )
12424, 122, 123syl2an 463 . . . 4  |-  ( (
ph  /\  -.  X  =  0 )  -> 
( abs `  X
)  e.  RR+ )
125124rprecred 10401 . . 3  |-  ( (
ph  /\  -.  X  =  0 )  -> 
( 1  /  ( abs `  X ) )  e.  RR )
126120, 125ifclda 3592 . 2  |-  ( ph  ->  if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  e.  RR )
127 oveq1 5865 . . . . 5  |-  ( 1  =  if ( X  =  0 ,  1 ,  ( 1  / 
( abs `  X
) ) )  -> 
( 1  x.  (
( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( if ( X  =  0 ,  1 ,  ( 1  / 
( abs `  X
) ) )  x.  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) ) )
128127breq2d 4035 . . . 4  |-  ( 1  =  if ( X  =  0 ,  1 ,  ( 1  / 
( abs `  X
) ) )  -> 
( ( abs `  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( 1  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  <->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) ) )
129 oveq1 5865 . . . . 5  |-  ( ( 1  /  ( abs `  X ) )  =  if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  ->  ( (
1  /  ( abs `  X ) )  x.  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )  =  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
130129breq2d 4035 . . . 4  |-  ( ( 1  /  ( abs `  X ) )  =  if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  ->  ( ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  <_ 
( ( 1  / 
( abs `  X
) )  x.  (
( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  <->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) ) )
131 elnnuz 10264 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
132 nnnn0 9972 . . . . . . . 8  |-  ( k  e.  NN  ->  k  e.  NN0 )
133131, 132sylbir 204 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN0 )
13415nn0ge0d 10021 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( k  +  1 ) )
13538absge0d 11926 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^
( k  +  1 ) ) ) ) )
13632, 39, 134, 135mulge0d 9349 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  <_  ( ( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )
137133, 136sylan2 460 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  0  <_  ( ( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )
138137adantr 451 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  0  <_  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )
139 oveq1 5865 . . . . . . . . . 10  |-  ( X  =  0  ->  ( X ^ k )  =  ( 0 ^ k
) )
140 simpr 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  ( ZZ>= `  1 )
)
141140, 131sylibr 203 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  NN )
1421410expd 11261 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( 0 ^ k )  =  0 )
143139, 142sylan9eqr 2337 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  ( X ^ k )  =  0 )
144143oveq2d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  0 ) )
14552mul01d 9011 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  0 )  =  0 )
146133, 145sylan2 460 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  0 )  =  0 )
147146adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  0 )  =  0 )
148144, 147eqtrd 2315 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) )  =  0 )
149148fveq2d 5529 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  =  ( abs `  0
) )
150 abs0 11770 . . . . . 6  |-  ( abs `  0 )  =  0
151149, 150syl6eq 2331 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  =  0 )
15240recnd 8861 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) )  e.  CC )
153152mulid2d 8853 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )
154133, 153sylan2 460 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( 1  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )
155154adantr 451 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  (
1  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )
156138, 151, 1553brtr4d 4053 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  = 
0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  <_ 
( 1  x.  (
( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
15755abscld 11918 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  e.  RR )
15851, 35, 54mulassd 8858 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( X ^
k ) )  =  ( ( k  +  1 )  x.  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) )
159158fveq2d 5529 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  =  ( abs `  ( ( k  +  1 )  x.  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) ) )
16035, 54mulcld 8855 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A `  ( k  +  1 ) )  x.  ( X ^
k ) )  e.  CC )
16151, 160absmuld 11936 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( k  +  1 )  x.  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) )  =  ( ( abs `  (
k  +  1 ) )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ k ) ) ) ) )
16232, 134absidd 11905 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( k  +  1 ) )  =  ( k  +  1 ) )
163162oveq1d 5873 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( abs `  ( k  +  1 ) )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ k ) ) ) ) )
164159, 161, 1633eqtrd 2319 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  =  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) ) )
165 eqle 8923 . . . . . . . . 9  |-  ( ( ( abs `  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) ) )  e.  RR  /\  ( abs `  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( X ^
k ) ) )  =  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) ) )  -> 
( abs `  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( (
k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) ) )
166157, 164, 165syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( (
k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) ) )
167166adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  <_ 
( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ k
) ) ) ) )
16824adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  X  e.  CC )
169123rpreccld 10400 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  X  =/=  0 )  -> 
( 1  /  ( abs `  X ) )  e.  RR+ )
170168, 169sylan 457 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
1  /  ( abs `  X ) )  e.  RR+ )
171170rpcnd 10392 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
1  /  ( abs `  X ) )  e.  CC )
17251adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
k  +  1 )  e.  CC )
17339adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) )  e.  RR )
174173recnd 8861 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) )  e.  CC )
175171, 172, 174mul12d 9021 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( 1  /  ( abs `  X ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( ( k  +  1 )  x.  (
( 1  /  ( abs `  X ) )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
17638adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) )  e.  CC )
17724ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  X  e.  CC )
178 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  X  =/=  0 )
179176, 177, 178absdivd 11937 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  ( ( ( A `  ( k  +  1 ) )  x.  ( X ^
( k  +  1 ) ) )  /  X ) )  =  ( ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) )  /  ( abs `  X ) ) )
18035adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( A `  ( k  +  1 ) )  e.  CC )
18137adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( X ^ ( k  +  1 ) )  e.  CC )
182180, 181, 177, 178divassd 9571 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) )  /  X )  =  ( ( A `  ( k  +  1 ) )  x.  (
( X ^ (
k  +  1 ) )  /  X ) ) )
1836adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  k  e.  CC )
184 pncan 9057 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
185183, 4, 184sylancl 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( k  +  1 )  -  1 )  =  k )
186185oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( X ^ ( ( k  +  1 )  - 
1 ) )  =  ( X ^ k
) )
18715nn0zd 10115 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  +  1 )  e.  ZZ )
188187adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
k  +  1 )  e.  ZZ )
189177, 178, 188expm1d 11255 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( X ^ ( ( k  +  1 )  - 
1 ) )  =  ( ( X ^
( k  +  1 ) )  /  X
) )
190186, 189eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( X ^ k )  =  ( ( X ^
( k  +  1 ) )  /  X
) )
191190oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) )  =  ( ( A `
 ( k  +  1 ) )  x.  ( ( X ^
( k  +  1 ) )  /  X
) ) )
192182, 191eqtr4d 2318 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) )  /  X )  =  ( ( A `  ( k  +  1 ) )  x.  ( X ^ k ) ) )
193192fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  ( ( ( A `  ( k  +  1 ) )  x.  ( X ^
( k  +  1 ) ) )  /  X ) )  =  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ k ) ) ) )
19424abscld 11918 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  X
)  e.  RR )
195194ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  X )  e.  RR )
196195recnd 8861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  X )  e.  CC )
197168, 123sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  X )  e.  RR+ )
198197rpne0d 10395 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  X )  =/=  0 )
199174, 196, 198divrec2d 9540 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) )  /  ( abs `  X ) )  =  ( ( 1  / 
( abs `  X
) )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) )
200179, 193, 1993eqtr3rd 2324 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( 1  /  ( abs `  X ) )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) )  =  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^
k ) ) ) )
201200oveq2d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( k  +  1 )  x.  ( ( 1  /  ( abs `  X ) )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ k
) ) ) ) )
202175, 201eqtrd 2315 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  (
( 1  /  ( abs `  X ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) )  =  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ k
) ) ) ) )
203167, 202breqtrrd 4049 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  X  =/=  0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  <_ 
( ( 1  / 
( abs `  X
) )  x.  (
( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
204133, 203sylanl2 632 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  X  =/=  0 )  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k
) ) )  <_ 
( ( 1  / 
( abs `  X
) )  x.  (
( k  +  1 )  x.  ( abs `  ( ( A `  ( k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
205121, 204sylan2br 462 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  1 )
)  /\  -.  X  =  0 )  -> 
( abs `  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( (
1  /  ( abs `  X ) )  x.  ( ( k  +  1 )  x.  ( abs `  ( ( A `
 ( k  +  1 ) )  x.  ( X ^ (
k  +  1 ) ) ) ) ) ) )
206128, 130, 156, 205ifbothda 3595 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( abs `  ( ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) )  x.  ( X ^ k ) ) )  <_  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
20750fveq2d 5529 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( H `  k
) )  =  ( abs `  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( X ^
k ) ) ) )
208133, 207sylan2 460 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( abs `  ( H `  k
) )  =  ( abs `  ( ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  x.  ( X ^
k ) ) ) )
20931oveq2d 5874 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) `  k
) )  =  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
210133, 209sylan2 460 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) `  k
) )  =  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( k  +  1 )  x.  ( abs `  (
( A `  (
k  +  1 ) )  x.  ( X ^ ( k  +  1 ) ) ) ) ) ) )
211206, 208, 2103brtr4d 4053 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( abs `  ( H `  k
) )  <_  ( if ( X  =  0 ,  1 ,  ( 1  /  ( abs `  X ) ) )  x.  ( ( ( i  e.  NN0  |->  ( i  x.  ( abs `  (
( G `  X
) `  i )
) ) )  shift  -u
1 ) `  k
) ) )
2121, 3, 41, 56, 119, 126, 211cvgcmpce 12276 1  |-  ( ph  ->  seq  0 (  +  ,  H )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   ifcif 3565   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354    seq cseq 11046   ^cexp 11104    shift cshi 11561   abscabs 11719    ~~> cli 11958
This theorem is referenced by:  pserdvlem2  19804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator