MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrass Unicode version

Theorem dvrass 15488
Description: An associative law for division. (divass 9458 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b  |-  B  =  ( Base `  R
)
dvrass.o  |-  U  =  (Unit `  R )
dvrass.d  |-  ./  =  (/r
`  R )
dvrass.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvrass  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( X  .x.  ( Y 
./  Z ) ) )

Proof of Theorem dvrass
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Ring )
2 simpr1 961 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  X  e.  B )
3 simpr2 962 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Y  e.  B )
4 simpr3 963 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Z  e.  U )
5 dvrass.o . . . . 5  |-  U  =  (Unit `  R )
6 eqid 2296 . . . . 5  |-  ( invr `  R )  =  (
invr `  R )
7 dvrass.b . . . . 5  |-  B  =  ( Base `  R
)
85, 6, 7rnginvcl 15474 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( invr `  R ) `  Z )  e.  B
)
91, 4, 8syl2anc 642 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
10 dvrass.t . . . 4  |-  .x.  =  ( .r `  R )
117, 10rngass 15373 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invr `  R
) `  Z )  e.  B ) )  -> 
( ( X  .x.  Y )  .x.  (
( invr `  R ) `  Z ) )  =  ( X  .x.  ( Y  .x.  ( ( invr `  R ) `  Z
) ) ) )
121, 2, 3, 9, 11syl13anc 1184 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  .x.  ( ( invr `  R
) `  Z )
)  =  ( X 
.x.  ( Y  .x.  ( ( invr `  R
) `  Z )
) ) )
137, 10rngcl 15370 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
14133adant3r3 1162 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .x.  Y )  e.  B
)
15 dvrass.d . . . 4  |-  ./  =  (/r
`  R )
167, 10, 5, 6, 15dvrval 15483 . . 3  |-  ( ( ( X  .x.  Y
)  e.  B  /\  Z  e.  U )  ->  ( ( X  .x.  Y )  ./  Z
)  =  ( ( X  .x.  Y ) 
.x.  ( ( invr `  R ) `  Z
) ) )
1714, 4, 16syl2anc 642 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( ( X  .x.  Y
)  .x.  ( ( invr `  R ) `  Z ) ) )
187, 10, 5, 6, 15dvrval 15483 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  U )  ->  ( Y  ./  Z
)  =  ( Y 
.x.  ( ( invr `  R ) `  Z
) ) )
193, 4, 18syl2anc 642 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( Y  ./  Z )  =  ( Y  .x.  ( (
invr `  R ) `  Z ) ) )
2019oveq2d 5890 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .x.  ( Y  ./  Z
) )  =  ( X  .x.  ( Y 
.x.  ( ( invr `  R ) `  Z
) ) ) )
2112, 17, 203eqtr4d 2338 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( X  .x.  ( Y 
./  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   .rcmulr 13225   Ringcrg 15353  Unitcui 15437   invrcinvr 15469  /rcdvr 15480
This theorem is referenced by:  dvrcan3  15490  irredrmul  15505
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481
  Copyright terms: Public domain W3C validator