MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Unicode version

Theorem dvrec 19320
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem dvrec
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 19274 . . . 4  |-  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) --> CC
2 ssid 3210 . . . . . . . 8  |-  CC  C_  CC
32a1i 10 . . . . . . 7  |-  ( A  e.  CC  ->  CC  C_  CC )
4 eldifsn 3762 . . . . . . . . 9  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
5 divcl 9446 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  x  =/=  0 )  ->  ( A  /  x )  e.  CC )
653expb 1152 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( A  /  x )  e.  CC )
74, 6sylan2b 461 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( A  /  x )  e.  CC )
8 eqid 2296 . . . . . . . 8  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) )
97, 8fmptd 5700 . . . . . . 7  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) : ( CC  \  {
0 } ) --> CC )
10 difss 3316 . . . . . . . 8  |-  ( CC 
\  { 0 } )  C_  CC
1110a1i 10 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  CC )
123, 9, 11dvbss 19267 . . . . . 6  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) 
C_  ( CC  \  { 0 } ) )
13 simpr 447 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( CC  \  { 0 } ) )
14 eqid 2296 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1514cnfldtop 18309 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
1614cnfldhaus 18310 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Haus
17 0cn 8847 . . . . . . . . . . . . . 14  |-  0  e.  CC
1814cnfldtopon 18308 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1918toponunii 16686 . . . . . . . . . . . . . . 15  |-  CC  =  U. ( TopOpen ` fld )
2019sncld 17115 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  0  e.  CC )  ->  { 0 }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
2116, 17, 20mp2an 653 . . . . . . . . . . . . 13  |-  { 0 }  e.  ( Clsd `  ( TopOpen ` fld ) )
2219cldopn 16784 . . . . . . . . . . . . 13  |-  ( { 0 }  e.  (
Clsd `  ( TopOpen ` fld ) )  ->  ( CC  \  { 0 } )  e.  ( TopOpen ` fld )
)
2321, 22ax-mp 8 . . . . . . . . . . . 12  |-  ( CC 
\  { 0 } )  e.  ( TopOpen ` fld )
24 isopn3i 16835 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( CC  \  {
0 } )  e.  ( TopOpen ` fld ) )  ->  (
( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  =  ( CC  \  { 0 } ) )
2515, 23, 24mp2an 653 . . . . . . . . . . 11  |-  ( ( int `  ( TopOpen ` fld )
) `  ( CC  \  { 0 } ) )  =  ( CC 
\  { 0 } )
2613, 25syl6eleqr 2387 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) ) )
27 eldifi 3311 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
2827adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  CC )
2928sqvald 11258 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y ^ 2 )  =  ( y  x.  y
) )
3029oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( A  /  (
y  x.  y ) ) )
31 simpl 443 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  A  e.  CC )
32 eldifsni 3763 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  =/=  0
)
3332adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  =/=  0 )
3431, 28, 28, 33, 33divdiv1d 9583 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( A  /  y )  / 
y )  =  ( A  /  ( y  x.  y ) ) )
3530, 34eqtr4d 2331 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( ( A  / 
y )  /  y
) )
3635negeqd 9062 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  = 
-u ( ( A  /  y )  / 
y ) )
3731, 28, 33divcld 9552 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  y )  e.  CC )
3837, 28, 33divnegd 9565 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( ( A  /  y )  /  y )  =  ( -u ( A  /  y )  / 
y ) )
3936, 38eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  =  ( -u ( A  /  y )  / 
y ) )
4037negcld 9160 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  y )  e.  CC )
41 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  =  ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) )
4241cdivcncf 18436 . . . . . . . . . . . . . 14  |-  ( -u ( A  /  y
)  e.  CC  ->  ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC ) )
4340, 42syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  e.  ( ( CC  \  {
0 } ) -cn-> CC ) )
44 oveq2 5882 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -u ( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
y ) )
4543, 13, 44cnmptlimc 19256 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( -u ( A  /  y )  / 
y )  e.  ( ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y ) )
4639, 45eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) lim CC  y
) )
47 cncff 18413 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC )  ->  (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) : ( CC  \  {
0 } ) --> CC )
4843, 47syl 15 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) : ( CC  \  { 0 } ) --> CC )
4948limcdif 19242 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
50 eldifi 3311 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  e.  ( CC  \  {
0 } ) )
5150adantl 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  ( CC  \  {
0 } ) )
5210, 51sseldi 3191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  CC )
5327ad2antlr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  e.  CC )
5452, 53subcld 9173 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  e.  CC )
5537adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( A  /  y )  e.  CC )
56 eldifsni 3763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
5751, 56syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  0 )
5855, 52, 57divcld 9552 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( A  /  y
)  /  z )  e.  CC )
59 mulneg12 9234 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  -  y
)  e.  CC  /\  ( ( A  / 
y )  /  z
)  e.  CC )  ->  ( -u (
z  -  y )  x.  ( ( A  /  y )  / 
z ) )  =  ( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) ) )
6054, 58, 59syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( z  -  y )  x.  -u ( ( A  / 
y )  /  z
) ) )
6153, 52, 58subdird 9252 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  -  z
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  x.  ( ( A  /  y )  / 
z ) )  -  ( z  x.  (
( A  /  y
)  /  z ) ) ) )
6252, 53negsubdi2d 9189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
z  -  y )  =  ( y  -  z ) )
6362oveq1d 5889 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  -  z )  x.  ( ( A  / 
y )  /  z
) ) )
64 oveq2 5882 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  ( A  /  x )  =  ( A  /  z
) )
65 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  /  z )  e. 
_V
6664, 8, 65fvmpt 5618 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  =  ( A  /  z ) )
6751, 66syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( A  /  z
) )
68 simpll 730 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  A  e.  CC )
6932ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  =/=  0 )
7068, 53, 69divcan2d 9554 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
y  x.  ( A  /  y ) )  =  A )
7170oveq1d 5889 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( A  /  z
) )
7253, 55, 52, 57divassd 9587 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
7367, 71, 723eqtr2d 2334 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
74 oveq2 5882 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  y  ->  ( A  /  x )  =  ( A  /  y
) )
75 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  /  y )  e. 
_V
7674, 8, 75fvmpt 5618 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
)  =  ( A  /  y ) )
7776ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( A  /  y
) )
7855, 52, 57divcan2d 9554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  x.  ( ( A  /  y )  /  z ) )  =  ( A  / 
y ) )
7977, 78eqtr4d 2331 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( z  x.  (
( A  /  y
)  /  z ) ) )
8073, 79oveq12d 5892 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( y  x.  (
( A  /  y
)  /  z ) )  -  ( z  x.  ( ( A  /  y )  / 
z ) ) ) )
8161, 63, 803eqtr4d 2338 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) ) )
8255, 52, 57divnegd 9565 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
z ) )
8382oveq2d 5890 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( z  -  y
)  x.  -u (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
8460, 81, 833eqtr3d 2336 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( z  -  y
)  x.  ( -u ( A  /  y
)  /  z ) ) )
8584oveq1d 5889 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) ) )
8685idi 2 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) ) )
8755negcld 9160 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u ( A  /  y )  e.  CC )
8887, 52, 57divcld 9552 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( A  /  y
)  /  z )  e.  CC )
8988idi 2 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( A  /  y
)  /  z )  e.  CC )
9052idi 2 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  CC )
9153idi 2 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  e.  CC )
9290, 91subcld 9173 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  e.  CC )
93 eldifsni 3763 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  =/=  y )
9493adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  y )
95 subeq0 9089 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( ( z  -  y )  =  0  <-> 
z  =  y ) )
9652, 53, 95syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( z  -  y
)  =  0  <->  z  =  y ) )
9796necon3bid 2494 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( z  -  y
)  =/=  0  <->  z  =/=  y ) )
9894, 97mpbird 223 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  =/=  0 )
9989, 92, 98divcan3d 9557 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) )  =  ( -u ( A  /  y )  / 
z ) )
10086, 99eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  (
-u ( A  / 
y )  /  z
) )
101100mpteq2dva 4122 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( -u ( A  /  y
)  /  z ) ) )
102 difss 3316 . . . . . . . . . . . . . . 15  |-  ( ( CC  \  { 0 } )  \  {
y } )  C_  ( CC  \  { 0 } )
103 resmpt 5016 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  \  {
0 } )  \  { y } ) 
C_  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) ) )
104102, 103ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) )
105101, 104syl6eqr 2346 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) ) )
106105oveq1d 5889 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
10749, 106eqtr4d 2331 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( z  e.  ( ( CC  \  {
0 } )  \  { y } ) 
|->  ( ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) ) lim
CC  y ) )
10846, 107eleqtrd 2372 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) )
10919restid 13354 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
11015, 109ax-mp 8 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
111110eqcomi 2300 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
112 eqid 2296 . . . . . . . . . . 11  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( ( ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) )
1132a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  CC  C_  CC )
1149adantr 451 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) : ( CC 
\  { 0 } ) --> CC )
11510a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( CC  \  { 0 } ) 
C_  CC )
116111, 14, 112, 113, 114, 115eldv 19264 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  <->  ( y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  /\  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) ) ) )
11726, 108, 116mpbir2and 888 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) -u ( A  /  ( y ^
2 ) ) )
118 vex 2804 . . . . . . . . . 10  |-  y  e. 
_V
119 negex 9066 . . . . . . . . . 10  |-  -u ( A  /  ( y ^
2 ) )  e. 
_V
120118, 119breldm 4899 . . . . . . . . 9  |-  ( y ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  ->  y  e.  dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) )
121117, 120syl 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) )
122121ex 423 . . . . . . 7  |-  ( A  e.  CC  ->  (
y  e.  ( CC 
\  { 0 } )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) ) )
123122ssrdv 3198 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
12412, 123eqssd 3209 . . . . 5  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  =  ( CC  \  { 0 } ) )
125124feq2d 5396 . . . 4  |-  ( A  e.  CC  ->  (
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) --> CC  <->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) : ( CC 
\  { 0 } ) --> CC ) )
1261, 125mpbii 202 . . 3  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : ( CC  \  { 0 } ) --> CC )
127 ffn 5405 . . 3  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : ( CC  \  {
0 } ) --> CC 
->  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
128126, 127syl 15 . 2  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
129 negex 9066 . . . 4  |-  -u ( A  /  ( x ^
2 ) )  e. 
_V
130129rgenw 2623 . . 3  |-  A. x  e.  ( CC  \  {
0 } ) -u ( A  /  (
x ^ 2 ) )  e.  _V
131 eqid 2296 . . . 4  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) )  =  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )
132131fnmpt 5386 . . 3  |-  ( A. x  e.  ( CC  \  { 0 } )
-u ( A  / 
( x ^ 2 ) )  e.  _V  ->  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )  Fn  ( CC  \  { 0 } ) )
133130, 132mp1i 11 . 2  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) )  Fn  ( CC  \  {
0 } ) )
134 ffun 5407 . . . . 5  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) --> CC  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
1351, 134mp1i 11 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
136 funbrfv 5577 . . . 4  |-  ( Fun  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  ->  ( y ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) -u ( A  /  (
y ^ 2 ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) ) )
137135, 117, 136sylc 56 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) )
138 oveq1 5881 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
139138oveq2d 5890 . . . . . 6  |-  ( x  =  y  ->  ( A  /  ( x ^
2 ) )  =  ( A  /  (
y ^ 2 ) ) )
140139negeqd 9062 . . . . 5  |-  ( x  =  y  ->  -u ( A  /  ( x ^
2 ) )  = 
-u ( A  / 
( y ^ 2 ) ) )
141140, 131, 119fvmpt 5618 . . . 4  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
142141adantl 452 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
143137, 142eqtr4d 2331 . 2  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  ( ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y ) )
144128, 133, 143eqfnfvd 5641 1  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    \ cdif 3162    C_ wss 3165   {csn 3653   class class class wbr 4039    e. cmpt 4093   dom cdm 4705    |` cres 4707   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   2c2 9811   ^cexp 11120   ↾t crest 13341   TopOpenctopn 13342  ℂfldccnfld 16393   Topctop 16647   Clsdccld 16769   intcnt 16770   Hauscha 17052   -cn->ccncf 18396   lim CC climc 19228    _D cdv 19229
This theorem is referenced by:  dvexp3  19341
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-t1 17058  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator