MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Unicode version

Theorem dvrec 19833
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Distinct variable group:    x, A

Proof of Theorem dvrec
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 19787 . . . 4  |-  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) --> CC
2 ssid 3359 . . . . . . . 8  |-  CC  C_  CC
32a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  CC  C_  CC )
4 eldifsn 3919 . . . . . . . . 9  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
5 divcl 9676 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  x  =/=  0 )  ->  ( A  /  x )  e.  CC )
653expb 1154 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( A  /  x )  e.  CC )
74, 6sylan2b 462 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( A  /  x )  e.  CC )
8 eqid 2435 . . . . . . . 8  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) )
97, 8fmptd 5885 . . . . . . 7  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) : ( CC  \  {
0 } ) --> CC )
10 difssd 3467 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  CC )
113, 9, 10dvbss 19780 . . . . . 6  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) 
C_  ( CC  \  { 0 } ) )
12 simpr 448 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( CC  \  { 0 } ) )
13 eqid 2435 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413cnfldtop 18810 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  Top
1513cnfldhaus 18811 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  Haus
16 0cn 9076 . . . . . . . . . . . . . 14  |-  0  e.  CC
1713cnfldtopon 18809 . . . . . . . . . . . . . . . 16  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1817toponunii 16989 . . . . . . . . . . . . . . 15  |-  CC  =  U. ( TopOpen ` fld )
1918sncld 17427 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  0  e.  CC )  ->  { 0 }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
2015, 16, 19mp2an 654 . . . . . . . . . . . . 13  |-  { 0 }  e.  ( Clsd `  ( TopOpen ` fld ) )
2118cldopn 17087 . . . . . . . . . . . . 13  |-  ( { 0 }  e.  (
Clsd `  ( TopOpen ` fld ) )  ->  ( CC  \  { 0 } )  e.  ( TopOpen ` fld )
)
2220, 21ax-mp 8 . . . . . . . . . . . 12  |-  ( CC 
\  { 0 } )  e.  ( TopOpen ` fld )
23 isopn3i 17138 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( CC  \  {
0 } )  e.  ( TopOpen ` fld ) )  ->  (
( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  =  ( CC  \  { 0 } ) )
2414, 22, 23mp2an 654 . . . . . . . . . . 11  |-  ( ( int `  ( TopOpen ` fld )
) `  ( CC  \  { 0 } ) )  =  ( CC 
\  { 0 } )
2512, 24syl6eleqr 2526 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) ) )
26 eldifi 3461 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  e.  CC )
2726adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  CC )
2827sqvald 11512 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y ^ 2 )  =  ( y  x.  y
) )
2928oveq2d 6089 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( A  /  (
y  x.  y ) ) )
30 simpl 444 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  A  e.  CC )
31 eldifsni 3920 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( CC  \  { 0 } )  ->  y  =/=  0
)
3231adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  =/=  0 )
3330, 27, 27, 32, 32divdiv1d 9813 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( A  /  y )  / 
y )  =  ( A  /  ( y  x.  y ) ) )
3429, 33eqtr4d 2470 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  ( y ^
2 ) )  =  ( ( A  / 
y )  /  y
) )
3534negeqd 9292 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  = 
-u ( ( A  /  y )  / 
y ) )
3630, 27, 32divcld 9782 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( A  /  y )  e.  CC )
3736, 27, 32divnegd 9795 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( ( A  /  y )  /  y )  =  ( -u ( A  /  y )  / 
y ) )
3835, 37eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  =  ( -u ( A  /  y )  / 
y ) )
3936negcld 9390 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  y )  e.  CC )
40 eqid 2435 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  =  ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) )
4140cdivcncf 18939 . . . . . . . . . . . . . 14  |-  ( -u ( A  /  y
)  e.  CC  ->  ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC ) )
4239, 41syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  e.  ( ( CC  \  {
0 } ) -cn-> CC ) )
43 oveq2 6081 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -u ( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
y ) )
4442, 12, 43cnmptlimc 19769 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( -u ( A  /  y )  / 
y )  e.  ( ( z  e.  ( CC  \  { 0 } )  |->  ( -u ( A  /  y
)  /  z ) ) lim CC  y ) )
4538, 44eqeltrd 2509 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) lim CC  y
) )
46 cncff 18915 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  e.  ( ( CC  \  { 0 } )
-cn-> CC )  ->  (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) : ( CC  \  {
0 } ) --> CC )
4742, 46syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) ) : ( CC  \  { 0 } ) --> CC )
4847limcdif 19755 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
49 eldifi 3461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  e.  ( CC  \  {
0 } ) )
5049adantl 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  ( CC  \  {
0 } ) )
5150eldifad 3324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  e.  CC )
5226ad2antlr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  e.  CC )
5351, 52subcld 9403 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  e.  CC )
5436adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( A  /  y )  e.  CC )
55 eldifsni 3920 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
5650, 55syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  0 )
5754, 51, 56divcld 9782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( A  /  y
)  /  z )  e.  CC )
58 mulneg12 9464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  -  y
)  e.  CC  /\  ( ( A  / 
y )  /  z
)  e.  CC )  ->  ( -u (
z  -  y )  x.  ( ( A  /  y )  / 
z ) )  =  ( ( z  -  y )  x.  -u (
( A  /  y
)  /  z ) ) )
5953, 57, 58syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( z  -  y )  x.  -u ( ( A  / 
y )  /  z
) ) )
6052, 51, 57subdird 9482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  -  z
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  x.  ( ( A  /  y )  / 
z ) )  -  ( z  x.  (
( A  /  y
)  /  z ) ) ) )
6151, 52negsubdi2d 9419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
z  -  y )  =  ( y  -  z ) )
6261oveq1d 6088 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( y  -  z )  x.  ( ( A  / 
y )  /  z
) ) )
63 oveq2 6081 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( A  /  x )  =  ( A  /  z
) )
64 ovex 6098 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  /  z )  e. 
_V
6563, 8, 64fvmpt 5798 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  =  ( A  /  z ) )
6650, 65syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( A  /  z
) )
67 simpll 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  A  e.  CC )
6831ad2antlr 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  y  =/=  0 )
6967, 52, 68divcan2d 9784 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
y  x.  ( A  /  y ) )  =  A )
7069oveq1d 6088 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( A  /  z
) )
7152, 54, 51, 56divassd 9817 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( y  x.  ( A  /  y ) )  /  z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
7266, 70, 713eqtr2d 2473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  =  ( y  x.  (
( A  /  y
)  /  z ) ) )
73 oveq2 6081 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  ( A  /  x )  =  ( A  /  y
) )
74 ovex 6098 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  /  y )  e. 
_V
7573, 8, 74fvmpt 5798 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
)  =  ( A  /  y ) )
7675ad2antlr 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( A  /  y
) )
7754, 51, 56divcan2d 9784 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  x.  ( ( A  /  y )  /  z ) )  =  ( A  / 
y ) )
7876, 77eqtr4d 2470 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y )  =  ( z  x.  (
( A  /  y
)  /  z ) ) )
7972, 78oveq12d 6091 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( y  x.  (
( A  /  y
)  /  z ) )  -  ( z  x.  ( ( A  /  y )  / 
z ) ) ) )
8060, 62, 793eqtr4d 2477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( z  -  y
)  x.  ( ( A  /  y )  /  z ) )  =  ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) ) )
8154, 51, 56divnegd 9795 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u (
( A  /  y
)  /  z )  =  ( -u ( A  /  y )  / 
z ) )
8281oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( z  -  y
)  x.  -u (
( A  /  y
)  /  z ) )  =  ( ( z  -  y )  x.  ( -u ( A  /  y )  / 
z ) ) )
8359, 80, 823eqtr3d 2475 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  =  ( ( z  -  y
)  x.  ( -u ( A  /  y
)  /  z ) ) )
8483oveq1d 6088 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  ( ( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) ) )
8554negcld 9390 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  -u ( A  /  y )  e.  CC )
8685, 51, 56divcld 9782 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  ( -u ( A  /  y
)  /  z )  e.  CC )
87 eldifsni 3920 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  ->  z  =/=  y )
8887adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  z  =/=  y )
8951, 52, 88subne0d 9412 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
z  -  y )  =/=  0 )
9086, 53, 89divcan3d 9787 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( z  -  y )  x.  ( -u ( A  /  y
)  /  z ) )  /  ( z  -  y ) )  =  ( -u ( A  /  y )  / 
z ) )
9184, 90eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  y  e.  ( CC 
\  { 0 } ) )  /\  z  e.  ( ( CC  \  { 0 } ) 
\  { y } ) )  ->  (
( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) )  =  (
-u ( A  / 
y )  /  z
) )
9291mpteq2dva 4287 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( -u ( A  /  y
)  /  z ) ) )
93 difss 3466 . . . . . . . . . . . . . . 15  |-  ( ( CC  \  { 0 } )  \  {
y } )  C_  ( CC  \  { 0 } )
94 resmpt 5183 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  \  {
0 } )  \  { y } ) 
C_  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) ) )
9593, 94ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  (
-u ( A  / 
y )  /  z
) )
9692, 95syl6eqr 2485 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) )  =  ( ( z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) )  |`  ( ( CC  \  { 0 } ) 
\  { y } ) ) )
9796oveq1d 6088 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) ) lim CC  y )  =  ( ( ( z  e.  ( CC  \  {
0 } )  |->  (
-u ( A  / 
y )  /  z
) )  |`  (
( CC  \  {
0 } )  \  { y } ) ) lim CC  y ) )
9848, 97eqtr4d 2470 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
z  e.  ( CC 
\  { 0 } )  |->  ( -u ( A  /  y )  / 
z ) ) lim CC  y )  =  ( ( z  e.  ( ( CC  \  {
0 } )  \  { y } ) 
|->  ( ( ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  z )  -  (
( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 y ) )  /  ( z  -  y ) ) ) lim
CC  y ) )
9945, 98eleqtrd 2511 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) )
10018restid 13653 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
10114, 100ax-mp 8 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
102101eqcomi 2439 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
103 eqid 2435 . . . . . . . . . . 11  |-  ( z  e.  ( ( CC 
\  { 0 } )  \  { y } )  |->  ( ( ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  z )  -  ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  y
) )  /  (
z  -  y ) ) )  =  ( z  e.  ( ( CC  \  { 0 } )  \  {
y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) `  z
)  -  ( ( x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) `  y ) )  / 
( z  -  y
) ) )
1042a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  CC  C_  CC )
1059adantr 452 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) : ( CC 
\  { 0 } ) --> CC )
106 difssd 3467 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( CC  \  { 0 } ) 
C_  CC )
107102, 13, 103, 104, 105, 106eldv 19777 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( y
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  <->  ( y  e.  ( ( int `  ( TopOpen
` fld
) ) `  ( CC  \  { 0 } ) )  /\  -u ( A  /  ( y ^
2 ) )  e.  ( ( z  e.  ( ( CC  \  { 0 } ) 
\  { y } )  |->  ( ( ( ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) `
 z )  -  ( ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) `  y ) )  /  ( z  -  y ) ) ) lim CC  y ) ) ) )
10825, 99, 107mpbir2and 889 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) -u ( A  /  ( y ^
2 ) ) )
109 vex 2951 . . . . . . . . . 10  |-  y  e. 
_V
110 negex 9296 . . . . . . . . . 10  |-  -u ( A  /  ( y ^
2 ) )  e. 
_V
111109, 110breldm 5066 . . . . . . . . 9  |-  ( y ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )
-u ( A  / 
( y ^ 2 ) )  ->  y  e.  dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) )
112108, 111syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) )
113112ex 424 . . . . . . 7  |-  ( A  e.  CC  ->  (
y  e.  ( CC 
\  { 0 } )  ->  y  e.  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) ) )
114113ssrdv 3346 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  \  { 0 } )  C_  dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
11511, 114eqssd 3357 . . . . 5  |-  ( A  e.  CC  ->  dom  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  =  ( CC  \  { 0 } ) )
116115feq2d 5573 . . . 4  |-  ( A  e.  CC  ->  (
( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) ) : dom  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) --> CC  <->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) : ( CC 
\  { 0 } ) --> CC ) )
1171, 116mpbii 203 . . 3  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) : ( CC  \  { 0 } ) --> CC )
118 ffn 5583 . . 3  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : ( CC  \  {
0 } ) --> CC 
->  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
119117, 118syl 16 . 2  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  Fn  ( CC  \  { 0 } ) )
120 negex 9296 . . . 4  |-  -u ( A  /  ( x ^
2 ) )  e. 
_V
121120rgenw 2765 . . 3  |-  A. x  e.  ( CC  \  {
0 } ) -u ( A  /  (
x ^ 2 ) )  e.  _V
122 eqid 2435 . . . 4  |-  ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) )  =  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )
123122fnmpt 5563 . . 3  |-  ( A. x  e.  ( CC  \  { 0 } )
-u ( A  / 
( x ^ 2 ) )  e.  _V  ->  ( x  e.  ( CC  \  { 0 } )  |->  -u ( A  /  ( x ^
2 ) ) )  Fn  ( CC  \  { 0 } ) )
124121, 123mp1i 12 . 2  |-  ( A  e.  CC  ->  (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) )  Fn  ( CC  \  {
0 } ) )
125 ffun 5585 . . . . 5  |-  ( ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) : dom  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( A  /  x ) ) ) --> CC  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
1261, 125mp1i 12 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  Fun  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) )
127 funbrfv 5757 . . . 4  |-  ( Fun  ( CC  _D  (
x  e.  ( CC 
\  { 0 } )  |->  ( A  /  x ) ) )  ->  ( y ( CC  _D  ( x  e.  ( CC  \  { 0 } ) 
|->  ( A  /  x
) ) ) -u ( A  /  (
y ^ 2 ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) ) )
128126, 108, 127sylc 58 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  -u ( A  /  ( y ^
2 ) ) )
129 oveq1 6080 . . . . . . 7  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
130129oveq2d 6089 . . . . . 6  |-  ( x  =  y  ->  ( A  /  ( x ^
2 ) )  =  ( A  /  (
y ^ 2 ) ) )
131130negeqd 9292 . . . . 5  |-  ( x  =  y  ->  -u ( A  /  ( x ^
2 ) )  = 
-u ( A  / 
( y ^ 2 ) ) )
132131, 122, 110fvmpt 5798 . . . 4  |-  ( y  e.  ( CC  \  { 0 } )  ->  ( ( x  e.  ( CC  \  { 0 } ) 
|->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
133132adantl 453 . . 3  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( (
x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y )  =  -u ( A  /  (
y ^ 2 ) ) )
134128, 133eqtr4d 2470 . 2  |-  ( ( A  e.  CC  /\  y  e.  ( CC  \  { 0 } ) )  ->  ( ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) ) `  y
)  =  ( ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) `  y ) )
135119, 124, 134eqfnfvd 5822 1  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( A  /  x ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  -u ( A  / 
( x ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   _Vcvv 2948    \ cdif 3309    C_ wss 3312   {csn 3806   class class class wbr 4204    e. cmpt 4258   dom cdm 4870    |` cres 4872   Fun wfun 5440    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982    x. cmul 8987    - cmin 9283   -ucneg 9284    / cdiv 9669   2c2 10041   ^cexp 11374   ↾t crest 13640   TopOpenctopn 13641  ℂfldccnfld 16695   Topctop 16950   Clsdccld 17072   intcnt 17073   Hauscha 17364   -cn->ccncf 18898   lim CC climc 19741    _D cdv 19742
This theorem is referenced by:  dvexp3  19854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-t1 17370  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746
  Copyright terms: Public domain W3C validator