MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrfval Unicode version

Theorem dvrfval 15482
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrval.b  |-  B  =  ( Base `  R
)
dvrval.t  |-  .x.  =  ( .r `  R )
dvrval.u  |-  U  =  (Unit `  R )
dvrval.i  |-  I  =  ( invr `  R
)
dvrval.d  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
dvrfval  |-  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )
Distinct variable groups:    x, y, B    x, I, y    x, R, y    x,  .x. , y    x, U, y
Allowed substitution hints:    ./ ( x, y)

Proof of Theorem dvrfval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 dvrval.d . 2  |-  ./  =  (/r
`  R )
2 fveq2 5541 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 dvrval.b . . . . . 6  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2346 . . . . 5  |-  ( r  =  R  ->  ( Base `  r )  =  B )
5 fveq2 5541 . . . . . 6  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
6 dvrval.u . . . . . 6  |-  U  =  (Unit `  R )
75, 6syl6eqr 2346 . . . . 5  |-  ( r  =  R  ->  (Unit `  r )  =  U )
8 fveq2 5541 . . . . . . 7  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
9 dvrval.t . . . . . . 7  |-  .x.  =  ( .r `  R )
108, 9syl6eqr 2346 . . . . . 6  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
11 eqidd 2297 . . . . . 6  |-  ( r  =  R  ->  x  =  x )
12 fveq2 5541 . . . . . . . 8  |-  ( r  =  R  ->  ( invr `  r )  =  ( invr `  R
) )
13 dvrval.i . . . . . . . 8  |-  I  =  ( invr `  R
)
1412, 13syl6eqr 2346 . . . . . . 7  |-  ( r  =  R  ->  ( invr `  r )  =  I )
1514fveq1d 5543 . . . . . 6  |-  ( r  =  R  ->  (
( invr `  r ) `  y )  =  ( I `  y ) )
1610, 11, 15oveq123d 5895 . . . . 5  |-  ( r  =  R  ->  (
x ( .r `  r ) ( (
invr `  r ) `  y ) )  =  ( x  .x.  (
I `  y )
) )
174, 7, 16mpt2eq123dv 5926 . . . 4  |-  ( r  =  R  ->  (
x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
18 df-dvr 15481 . . . 4  |- /r  =  (
r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r
)  |->  ( x ( .r `  r ) ( ( invr `  r
) `  y )
) ) )
19 fvex 5555 . . . . . 6  |-  ( Base `  R )  e.  _V
203, 19eqeltri 2366 . . . . 5  |-  B  e. 
_V
21 fvex 5555 . . . . . 6  |-  (Unit `  R )  e.  _V
226, 21eqeltri 2366 . . . . 5  |-  U  e. 
_V
2320, 22mpt2ex 6214 . . . 4  |-  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) )  e.  _V
2417, 18, 23fvmpt 5618 . . 3  |-  ( R  e.  _V  ->  (/r `  R )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
25 fvprc 5535 . . . 4  |-  ( -.  R  e.  _V  ->  (/r `  R )  =  (/) )
26 fvprc 5535 . . . . . . 7  |-  ( -.  R  e.  _V  ->  (
Base `  R )  =  (/) )
273, 26syl5eq 2340 . . . . . 6  |-  ( -.  R  e.  _V  ->  B  =  (/) )
28 eqid 2296 . . . . . 6  |-  U  =  U
29 mpt2eq12 5924 . . . . . 6  |-  ( ( B  =  (/)  /\  U  =  U )  ->  (
x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) ) )
3027, 28, 29sylancl 643 . . . . 5  |-  ( -.  R  e.  _V  ->  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) ) )
31 mpt20 6215 . . . . 5  |-  ( x  e.  (/) ,  y  e.  U  |->  ( x  .x.  ( I `  y
) ) )  =  (/)
3230, 31syl6eq 2344 . . . 4  |-  ( -.  R  e.  _V  ->  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) )  =  (/) )
3325, 32eqtr4d 2331 . . 3  |-  ( -.  R  e.  _V  ->  (/r `  R )  =  ( x  e.  B , 
y  e.  U  |->  ( x  .x.  ( I `
 y ) ) ) )
3424, 33pm2.61i 156 . 2  |-  (/r `  R
)  =  ( x  e.  B ,  y  e.  U  |->  ( x 
.x.  ( I `  y ) ) )
351, 34eqtri 2316 1  |-  ./  =  ( x  e.  B ,  y  e.  U  |->  ( x  .x.  (
I `  y )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Basecbs 13164   .rcmulr 13225  Unitcui 15437   invrcinvr 15469  /rcdvr 15480
This theorem is referenced by:  dvrval  15483  cnflddiv  16420  dvrcn  17882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-dvr 15481
  Copyright terms: Public domain W3C validator