MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvsincos Unicode version

Theorem dvsincos 19328
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
dvsincos  |-  ( ( CC  _D  sin )  =  cos  /\  ( CC 
_D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x ) ) )

Proof of Theorem dvsincos
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnex 8818 . . . . . . 7  |-  CC  e.  _V
21prid2 3735 . . . . . 6  |-  CC  e.  { RR ,  CC }
32a1i 10 . . . . 5  |-  (  T. 
->  CC  e.  { RR ,  CC } )
4 ax-icn 8796 . . . . . . . . . 10  |-  _i  e.  CC
54a1i 10 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  _i  e.  CC )
6 simpr 447 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  x  e.  CC )
75, 6mulcld 8855 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
_i  x.  x )  e.  CC )
8 efcl 12364 . . . . . . . 8  |-  ( ( _i  x.  x )  e.  CC  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
97, 8syl 15 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
10 ine0 9215 . . . . . . . 8  |-  _i  =/=  0
1110a1i 10 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  _i  =/=  0 )
129, 5, 11divcld 9536 . . . . . 6  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  /  _i )  e.  CC )
134negcli 9114 . . . . . . . . . 10  |-  -u _i  e.  CC
14 mulcl 8821 . . . . . . . . . 10  |-  ( (
-u _i  e.  CC  /\  x  e.  CC )  ->  ( -u _i  x.  x )  e.  CC )
1513, 6, 14sylancr 644 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  ( -u _i  x.  x )  e.  CC )
16 efcl 12364 . . . . . . . . 9  |-  ( (
-u _i  x.  x
)  e.  CC  ->  ( exp `  ( -u _i  x.  x ) )  e.  CC )
1715, 16syl 15 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  ( exp `  ( -u _i  x.  x ) )  e.  CC )
1817, 5, 11divcld 9536 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  /  _i )  e.  CC )
1918negcld 9144 . . . . . 6  |-  ( (  T.  /\  x  e.  CC )  ->  -u (
( exp `  ( -u _i  x.  x ) )  /  _i )  e.  CC )
2012, 19addcld 8854 . . . . 5  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  e.  CC )
219, 17addcld 8854 . . . . 5  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
229, 5mulcld 8855 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  x.  _i )  e.  CC )
23 efcl 12364 . . . . . . . . . 10  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
2423adantl 452 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  CC )  ->  ( exp `  y )  e.  CC )
25 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
2625a1i 10 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  CC )  ->  1  e.  CC )
273dvmptid 19306 . . . . . . . . . . 11  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
284a1i 10 . . . . . . . . . . 11  |-  (  T. 
->  _i  e.  CC )
293, 6, 26, 27, 28dvmptcmul 19313 . . . . . . . . . 10  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  ( _i  x.  1 ) ) )
304mulid1i 8839 . . . . . . . . . . 11  |-  ( _i  x.  1 )  =  _i
3130mpteq2i 4103 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( _i  x.  1 ) )  =  ( x  e.  CC  |->  _i )
3229, 31syl6eq 2331 . . . . . . . . 9  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  _i ) )
33 eff 12363 . . . . . . . . . . . . 13  |-  exp : CC
--> CC
3433a1i 10 . . . . . . . . . . . 12  |-  (  T. 
->  exp : CC --> CC )
3534feqmptd 5575 . . . . . . . . . . 11  |-  (  T. 
->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
3635oveq2d 5874 . . . . . . . . . 10  |-  (  T. 
->  ( CC  _D  exp )  =  ( CC  _D  ( y  e.  CC  |->  ( exp `  y ) ) ) )
37 dvef 19327 . . . . . . . . . . 11  |-  ( CC 
_D  exp )  =  exp
3837, 35syl5eq 2327 . . . . . . . . . 10  |-  (  T. 
->  ( CC  _D  exp )  =  ( y  e.  CC  |->  ( exp `  y
) ) )
3936, 38eqtr3d 2317 . . . . . . . . 9  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( exp `  y ) ) )  =  ( y  e.  CC  |->  ( exp `  y ) ) )
40 fveq2 5525 . . . . . . . . 9  |-  ( y  =  ( _i  x.  x )  ->  ( exp `  y )  =  ( exp `  (
_i  x.  x )
) )
413, 3, 7, 5, 24, 24, 32, 39, 40, 40dvmptco 19321 . . . . . . . 8  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) )
4210a1i 10 . . . . . . . 8  |-  (  T. 
->  _i  =/=  0 )
433, 9, 22, 41, 28, 42dvmptdivc 19314 . . . . . . 7  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  /  _i ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  x.  _i )  /  _i ) ) )
449, 5, 11divcan4d 9542 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  /  _i )  =  ( exp `  (
_i  x.  x )
) )
4544mpteq2dva 4106 . . . . . . 7  |-  (  T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  /  _i ) )  =  ( x  e.  CC  |->  ( exp `  (
_i  x.  x )
) ) )
4643, 45eqtrd 2315 . . . . . 6  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  /  _i ) ) )  =  ( x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) ) )
47 mulcl 8821 . . . . . . . . . 10  |-  ( ( ( exp `  ( -u _i  x.  x ) )  e.  CC  /\  -u _i  e.  CC )  ->  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  e.  CC )
4817, 13, 47sylancl 643 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  x.  -u _i )  e.  CC )
4948, 5, 11divcld 9536 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i )  e.  CC )
5013a1i 10 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  -u _i  e.  CC )
5113a1i 10 . . . . . . . . . . . 12  |-  (  T. 
->  -u _i  e.  CC )
523, 6, 26, 27, 51dvmptcmul 19313 . . . . . . . . . . 11  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  (
-u _i  x.  x
) ) )  =  ( x  e.  CC  |->  ( -u _i  x.  1 ) ) )
5313mulid1i 8839 . . . . . . . . . . . 12  |-  ( -u _i  x.  1 )  = 
-u _i
5453mpteq2i 4103 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( -u _i  x.  1 ) )  =  ( x  e.  CC  |->  -u _i )
5552, 54syl6eq 2331 . . . . . . . . . 10  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  (
-u _i  x.  x
) ) )  =  ( x  e.  CC  |->  -u _i ) )
56 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  ( -u _i  x.  x )  ->  ( exp `  y )  =  ( exp `  ( -u _i  x.  x ) ) )
573, 3, 15, 50, 24, 24, 55, 39, 56, 56dvmptco 19321 . . . . . . . . 9  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) ) )
583, 17, 48, 57, 28, 42dvmptdivc 19314 . . . . . . . 8  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i ) ) )
593, 18, 49, 58dvmptneg 19315 . . . . . . 7  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )  =  ( x  e.  CC  |->  -u ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i ) ) )
6048, 5, 11divneg2d 9550 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  -u (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i )  =  ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  -u _i ) )
614, 10negne0i 9121 . . . . . . . . . . 11  |-  -u _i  =/=  0
6261a1i 10 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  -u _i  =/=  0 )
6317, 50, 62divcan4d 9542 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  -u _i )  =  ( exp `  ( -u _i  x.  x ) ) )
6460, 63eqtrd 2315 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  -u (
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i )  =  ( exp `  ( -u _i  x.  x ) ) )
6564mpteq2dva 4106 . . . . . . 7  |-  (  T. 
->  ( x  e.  CC  |->  -u ( ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  /  _i ) )  =  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) ) )
6659, 65eqtrd 2315 . . . . . 6  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )  =  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) ) )
673, 12, 9, 46, 19, 17, 66dvmptadd 19309 . . . . 5  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) ) ) )
68 2cn 9816 . . . . . 6  |-  2  e.  CC
6968a1i 10 . . . . 5  |-  (  T. 
->  2  e.  CC )
70 2ne0 9829 . . . . . 6  |-  2  =/=  0
7170a1i 10 . . . . 5  |-  (  T. 
->  2  =/=  0
)
723, 20, 21, 67, 69, 71dvmptdivc 19314 . . . 4  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( ( ( exp `  ( _i  x.  x
) )  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2 ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )
73 df-sin 12351 . . . . . 6  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
749, 17subcld 9157 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
7568a1i 10 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  2  e.  CC )
7670a1i 10 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  2  =/=  0 )
7774, 5, 75, 11, 76divdiv1d 9567 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( _i  x.  2 ) ) )
784, 68mulcomi 8843 . . . . . . . . . 10  |-  ( _i  x.  2 )  =  ( 2  x.  _i )
7978oveq2i 5869 . . . . . . . . 9  |-  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( _i  x.  2 ) )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) )
8077, 79syl6eq 2331 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
819, 17, 5, 11divsubdird 9575 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  /  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )
8212, 18negsubd 9163 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  /  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )
8381, 82eqtr4d 2318 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) ) )
8483oveq1d 5873 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  ( ( ( ( exp `  ( _i  x.  x
) )  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2 ) )
8580, 84eqtr3d 2317 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( ( exp `  ( _i  x.  x ) )  /  _i )  + 
-u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) )
8685mpteq2dva 4106 . . . . . 6  |-  (  T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  =  ( x  e.  CC  |->  ( ( ( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) ) )
8773, 86syl5eq 2327 . . . . 5  |-  (  T. 
->  sin  =  ( x  e.  CC  |->  ( ( ( ( exp `  (
_i  x.  x )
)  /  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) ) )
8887oveq2d 5874 . . . 4  |-  (  T. 
->  ( CC  _D  sin )  =  ( CC  _D  ( x  e.  CC  |->  ( ( ( ( exp `  ( _i  x.  x ) )  /  _i )  + 
-u ( ( exp `  ( -u _i  x.  x ) )  /  _i ) )  /  2
) ) ) )
89 df-cos 12352 . . . . 5  |-  cos  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
9089a1i 10 . . . 4  |-  (  T. 
->  cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )
9172, 88, 903eqtr4d 2325 . . 3  |-  (  T. 
->  ( CC  _D  sin )  =  cos )
9222, 48addcld 8854 . . . . 5  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  e.  CC )
933, 9, 22, 41, 17, 48, 57dvmptadd 19309 . . . . 5  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) ) ) )
943, 21, 92, 93, 69, 71dvmptdivc 19314 . . . 4  |-  (  T. 
->  ( CC  _D  (
x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) )  =  ( x  e.  CC  |->  ( ( ( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  / 
2 ) ) )
9590oveq2d 5874 . . . 4  |-  (  T. 
->  ( CC  _D  cos )  =  ( CC  _D  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) ) ) )
9674, 5, 11divcld 9536 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  e.  CC )
9796, 75, 76divnegd 9549 . . . . . 6  |-  ( (  T.  /\  x  e.  CC )  ->  -u (
( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 )  =  (
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  /  2 ) )
98 sinval 12402 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( sin `  x )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
9998adantl 452 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  ( sin `  x )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
10099, 80eqtr4d 2318 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  ( sin `  x )  =  ( ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  /  2 ) )
101100negeqd 9046 . . . . . 6  |-  ( (  T.  /\  x  e.  CC )  ->  -u ( sin `  x )  = 
-u ( ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  / 
2 ) )
1024negnegi 9116 . . . . . . . . . 10  |-  -u -u _i  =  _i
103102oveq2i 5869 . . . . . . . . 9  |-  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u -u _i )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i )
104 mulneg2 9217 . . . . . . . . . 10  |-  ( ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC  /\  -u _i  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u -u _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
10574, 13, 104sylancl 643 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u -u _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
106103, 105syl5eqr 2329 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
107 mulcl 8821 . . . . . . . . . . 11  |-  ( ( ( exp `  ( -u _i  x.  x ) )  e.  CC  /\  _i  e.  CC )  -> 
( ( exp `  ( -u _i  x.  x ) )  x.  _i )  e.  CC )
10817, 4, 107sylancl 643 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  x.  _i )  e.  CC )
10922, 108negsubd 9163 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) ) )
110 mulneg2 9217 . . . . . . . . . . 11  |-  ( ( ( exp `  ( -u _i  x.  x ) )  e.  CC  /\  _i  e.  CC )  -> 
( ( exp `  ( -u _i  x.  x ) )  x.  -u _i )  =  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) )
11117, 4, 110sylancl 643 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  (
( exp `  ( -u _i  x.  x ) )  x.  -u _i )  =  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) )
112111oveq2d 5874 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  =  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  +  -u ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) ) )
1139, 17, 5subdird 9236 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  -  ( ( exp `  ( -u _i  x.  x ) )  x.  _i ) ) )
114109, 112, 1133eqtr4d 2325 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  _i ) )
11574, 5, 11divrecd 9539 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  ( 1  /  _i ) ) )
116 irec 11202 . . . . . . . . . . 11  |-  ( 1  /  _i )  = 
-u _i
117116oveq2i 5869 . . . . . . . . . 10  |-  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  ( 1  /  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i )
118115, 117syl6eq 2331 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  =  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
119118negeqd 9046 . . . . . . . 8  |-  ( (  T.  /\  x  e.  CC )  ->  -u (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  x.  -u _i ) )
120106, 114, 1193eqtr4d 2325 . . . . . . 7  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( exp `  (
_i  x.  x )
)  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  = 
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i ) )
121120oveq1d 5873 . . . . . 6  |-  ( (  T.  /\  x  e.  CC )  ->  (
( ( ( exp `  ( _i  x.  x
) )  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  / 
2 )  =  (
-u ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  _i )  /  2 ) )
12297, 101, 1213eqtr4d 2325 . . . . 5  |-  ( (  T.  /\  x  e.  CC )  ->  -u ( sin `  x )  =  ( ( ( ( exp `  ( _i  x.  x ) )  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  /  2
) )
123122mpteq2dva 4106 . . . 4  |-  (  T. 
->  ( x  e.  CC  |->  -u ( sin `  x
) )  =  ( x  e.  CC  |->  ( ( ( ( exp `  ( _i  x.  x
) )  x.  _i )  +  ( ( exp `  ( -u _i  x.  x ) )  x.  -u _i ) )  / 
2 ) ) )
12494, 95, 1233eqtr4d 2325 . . 3  |-  (  T. 
->  ( CC  _D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x
) ) )
12591, 124jca 518 . 2  |-  (  T. 
->  ( ( CC  _D  sin )  =  cos  /\  ( CC  _D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x
) ) ) )
126125trud 1314 1  |-  ( ( CC  _D  sin )  =  cos  /\  ( CC 
_D  cos )  =  ( x  e.  CC  |->  -u ( sin `  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    T. wtru 1307    = wceq 1623    e. wcel 1684    =/= wne 2446   {cpr 3641    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738   _ici 8739    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   expce 12343   sincsin 12345   cosccos 12346    _D cdv 19213
This theorem is referenced by:  dvsin  19329  dvcos  19330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator