MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisj Unicode version

Theorem dyaddisj 19356
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyaddisj  |-  ( ( A  e.  ran  F  /\  B  e.  ran  F )  ->  ( ( [,] `  A )  C_  ( [,] `  B )  \/  ( [,] `  B
)  C_  ( [,] `  A )  \/  (
( (,) `  A
)  i^i  ( (,) `  B ) )  =  (/) ) )
Distinct variable groups:    x, y, B    x, A, y    x, F, y

Proof of Theorem dyaddisj
Dummy variables  c 
d  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . . . 5  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
21dyadf 19351 . . . 4  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
3 ffn 5532 . . . 4  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
4 ovelrn 6162 . . . . 5  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( A  e.  ran  F  <->  E. a  e.  ZZ  E. c  e. 
NN0  A  =  (
a F c ) ) )
5 ovelrn 6162 . . . . 5  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( B  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  B  =  (
b F d ) ) )
64, 5anbi12d 692 . . . 4  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( ( A  e.  ran  F  /\  B  e.  ran  F )  <->  ( E. a  e.  ZZ  E. c  e. 
NN0  A  =  (
a F c )  /\  E. b  e.  ZZ  E. d  e. 
NN0  B  =  (
b F d ) ) ) )
72, 3, 6mp2b 10 . . 3  |-  ( ( A  e.  ran  F  /\  B  e.  ran  F )  <->  ( E. a  e.  ZZ  E. c  e. 
NN0  A  =  (
a F c )  /\  E. b  e.  ZZ  E. d  e. 
NN0  B  =  (
b F d ) ) )
8 reeanv 2819 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( E. c  e.  NN0  A  =  ( a F c )  /\  E. d  e.  NN0  B  =  ( b F d ) )  <->  ( E. a  e.  ZZ  E. c  e.  NN0  A  =  ( a F c )  /\  E. b  e.  ZZ  E. d  e. 
NN0  B  =  (
b F d ) ) )
97, 8bitr4i 244 . 2  |-  ( ( A  e.  ran  F  /\  B  e.  ran  F )  <->  E. a  e.  ZZ  E. b  e.  ZZ  ( E. c  e.  NN0  A  =  ( a F c )  /\  E. d  e.  NN0  B  =  ( b F d ) ) )
10 reeanv 2819 . . . 4  |-  ( E. c  e.  NN0  E. d  e.  NN0  ( A  =  ( a F c )  /\  B  =  ( b F d ) )  <->  ( E. c  e.  NN0  A  =  ( a F c )  /\  E. d  e.  NN0  B  =  ( b F d ) ) )
11 nn0re 10163 . . . . . . . 8  |-  ( c  e.  NN0  ->  c  e.  RR )
1211ad2antrl 709 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e. 
NN0  /\  d  e.  NN0 ) )  ->  c  e.  RR )
13 nn0re 10163 . . . . . . . 8  |-  ( d  e.  NN0  ->  d  e.  RR )
1413ad2antll 710 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e. 
NN0  /\  d  e.  NN0 ) )  ->  d  e.  RR )
151dyaddisjlem 19355 . . . . . . 7  |-  ( ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  (
c  e.  NN0  /\  d  e.  NN0 ) )  /\  c  <_  d
)  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  (
( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) )
16 ancom 438 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  <->  ( b  e.  ZZ  /\  a  e.  ZZ )
)
17 ancom 438 . . . . . . . . . 10  |-  ( ( c  e.  NN0  /\  d  e.  NN0 )  <->  ( d  e.  NN0  /\  c  e. 
NN0 ) )
1816, 17anbi12i 679 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e. 
NN0  /\  d  e.  NN0 ) )  <->  ( (
b  e.  ZZ  /\  a  e.  ZZ )  /\  ( d  e.  NN0  /\  c  e.  NN0 )
) )
191dyaddisjlem 19355 . . . . . . . . 9  |-  ( ( ( ( b  e.  ZZ  /\  a  e.  ZZ )  /\  (
d  e.  NN0  /\  c  e.  NN0 ) )  /\  d  <_  c
)  ->  ( ( [,] `  ( b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  \/  (
( (,) `  (
b F d ) )  i^i  ( (,) `  ( a F c ) ) )  =  (/) ) )
2018, 19sylanb 459 . . . . . . . 8  |-  ( ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  (
c  e.  NN0  /\  d  e.  NN0 ) )  /\  d  <_  c
)  ->  ( ( [,] `  ( b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  \/  (
( (,) `  (
b F d ) )  i^i  ( (,) `  ( a F c ) ) )  =  (/) ) )
21 orcom 377 . . . . . . . . . 10  |-  ( ( ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) ) ) )
22 incom 3477 . . . . . . . . . . 11  |-  ( ( (,) `  ( b F d ) )  i^i  ( (,) `  (
a F c ) ) )  =  ( ( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )
2322eqeq1i 2395 . . . . . . . . . 10  |-  ( ( ( (,) `  (
b F d ) )  i^i  ( (,) `  ( a F c ) ) )  =  (/) 
<->  ( ( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) )
2421, 23orbi12i 508 . . . . . . . . 9  |-  ( ( ( ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) )  \/  ( ( (,) `  ( b F d ) )  i^i  ( (,) `  (
a F c ) ) )  =  (/) ) 
<->  ( ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) ) )  \/  ( ( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) )
25 df-3or 937 . . . . . . . . 9  |-  ( ( ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( ( (,) `  ( b F d ) )  i^i  ( (,) `  ( a F c ) ) )  =  (/) )  <->  ( (
( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) )  \/  ( ( (,) `  ( b F d ) )  i^i  ( (,) `  (
a F c ) ) )  =  (/) ) )
26 df-3or 937 . . . . . . . . 9  |-  ( ( ( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  ( b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( ( (,) `  ( a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) )  <->  ( (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  ( b F d ) )  C_  ( [,] `  ( a F c ) ) )  \/  ( ( (,) `  ( a F c ) )  i^i  ( (,) `  (
b F d ) ) )  =  (/) ) )
2724, 25, 263bitr4i 269 . . . . . . . 8  |-  ( ( ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( ( (,) `  ( b F d ) )  i^i  ( (,) `  ( a F c ) ) )  =  (/) )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  (
( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) )
2820, 27sylib 189 . . . . . . 7  |-  ( ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  (
c  e.  NN0  /\  d  e.  NN0 ) )  /\  d  <_  c
)  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  (
( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) )
2912, 14, 15, 28lecasei 9113 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e. 
NN0  /\  d  e.  NN0 ) )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  ( b F d ) )  C_  ( [,] `  ( a F c ) )  \/  ( ( (,) `  ( a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) )
30 simpl 444 . . . . . . . . 9  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  A  =  ( a F c ) )
3130fveq2d 5673 . . . . . . . 8  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( [,] `  A
)  =  ( [,] `  ( a F c ) ) )
32 simpr 448 . . . . . . . . 9  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  B  =  ( b F d ) )
3332fveq2d 5673 . . . . . . . 8  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( [,] `  B
)  =  ( [,] `  ( b F d ) ) )
3431, 33sseq12d 3321 . . . . . . 7  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( ( [,] `  A )  C_  ( [,] `  B )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )
3533, 31sseq12d 3321 . . . . . . 7  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( ( [,] `  B )  C_  ( [,] `  A )  <->  ( [,] `  ( b F d ) )  C_  ( [,] `  ( a F c ) ) ) )
3630fveq2d 5673 . . . . . . . . 9  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( (,) `  A
)  =  ( (,) `  ( a F c ) ) )
3732fveq2d 5673 . . . . . . . . 9  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( (,) `  B
)  =  ( (,) `  ( b F d ) ) )
3836, 37ineq12d 3487 . . . . . . . 8  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( ( (,) `  A )  i^i  ( (,) `  B ) )  =  ( ( (,) `  ( a F c ) )  i^i  ( (,) `  ( b F d ) ) ) )
3938eqeq1d 2396 . . . . . . 7  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( ( ( (,) `  A )  i^i  ( (,) `  B
) )  =  (/)  <->  (
( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) )
4034, 35, 393orbi123d 1253 . . . . . 6  |-  ( ( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( ( ( [,] `  A ) 
C_  ( [,] `  B
)  \/  ( [,] `  B )  C_  ( [,] `  A )  \/  ( ( (,) `  A
)  i^i  ( (,) `  B ) )  =  (/) )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  \/  ( [,] `  (
b F d ) )  C_  ( [,] `  ( a F c ) )  \/  (
( (,) `  (
a F c ) )  i^i  ( (,) `  ( b F d ) ) )  =  (/) ) ) )
4129, 40syl5ibrcom 214 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e. 
NN0  /\  d  e.  NN0 ) )  ->  (
( A  =  ( a F c )  /\  B  =  ( b F d ) )  ->  ( ( [,] `  A )  C_  ( [,] `  B )  \/  ( [,] `  B
)  C_  ( [,] `  A )  \/  (
( (,) `  A
)  i^i  ( (,) `  B ) )  =  (/) ) ) )
4241rexlimdvva 2781 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e. 
NN0  E. d  e.  NN0  ( A  =  (
a F c )  /\  B  =  ( b F d ) )  ->  ( ( [,] `  A )  C_  ( [,] `  B )  \/  ( [,] `  B
)  C_  ( [,] `  A )  \/  (
( (,) `  A
)  i^i  ( (,) `  B ) )  =  (/) ) ) )
4310, 42syl5bir 210 . . 3  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( E. c  e.  NN0  A  =  ( a F c )  /\  E. d  e. 
NN0  B  =  (
b F d ) )  ->  ( ( [,] `  A )  C_  ( [,] `  B )  \/  ( [,] `  B
)  C_  ( [,] `  A )  \/  (
( (,) `  A
)  i^i  ( (,) `  B ) )  =  (/) ) ) )
4443rexlimivv 2779 . 2  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  ( E. c  e.  NN0  A  =  ( a F c )  /\  E. d  e.  NN0  B  =  ( b F d ) )  ->  (
( [,] `  A
)  C_  ( [,] `  B )  \/  ( [,] `  B )  C_  ( [,] `  A )  \/  ( ( (,) `  A )  i^i  ( (,) `  B ) )  =  (/) ) )
459, 44sylbi 188 1  |-  ( ( A  e.  ran  F  /\  B  e.  ran  F )  ->  ( ( [,] `  A )  C_  ( [,] `  B )  \/  ( [,] `  B
)  C_  ( [,] `  A )  \/  (
( (,) `  A
)  i^i  ( (,) `  B ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1717   E.wrex 2651    i^i cin 3263    C_ wss 3264   (/)c0 3572   <.cop 3761   class class class wbr 4154    X. cxp 4817   ran crn 4820    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021    e. cmpt2 6023   RRcr 8923   1c1 8925    + caddc 8927    <_ cle 9055    / cdiv 9610   2c2 9982   NN0cn0 10154   ZZcz 10215   (,)cioo 10849   [,]cicc 10852   ^cexp 11310
This theorem is referenced by:  dyadmbl  19360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-n0 10155  df-z 10216  df-uz 10422  df-ioo 10853  df-icc 10856  df-seq 11252  df-exp 11311
  Copyright terms: Public domain W3C validator