MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Structured version   Unicode version

Theorem dyaddisjlem 19487
Description: Lemma for dyaddisj 19488. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyaddisjlem  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
Distinct variable groups:    x, y, B    x, C, y    x, A, y    x, D, y   
x, F, y

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  A  e.  ZZ )
2 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  C  e.  NN0 )
3 dyadmbl.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
43dyadval 19484 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  NN0 )  -> 
( A F C )  =  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  + 
1 )  /  (
2 ^ C ) ) >. )
51, 2, 4syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A F C )  =  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  + 
1 )  /  (
2 ^ C ) ) >. )
65fveq2d 5732 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( A F C ) )  =  ( (,) `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
)
7 df-ov 6084 . . . . . . . 8  |-  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  =  ( (,) `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
86, 7syl6eqr 2486 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( A F C ) )  =  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
9 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  B  e.  ZZ )
10 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  D  e.  NN0 )
113dyadval 19484 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  D  e.  NN0 )  -> 
( B F D )  =  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  + 
1 )  /  (
2 ^ D ) ) >. )
129, 10, 11syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B F D )  =  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  + 
1 )  /  (
2 ^ D ) ) >. )
1312fveq2d 5732 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( B F D ) )  =  ( (,) `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
)
14 df-ov 6084 . . . . . . . 8  |-  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  =  ( (,) `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
1513, 14syl6eqr 2486 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( B F D ) )  =  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) ) )
168, 15ineq12d 3543 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) )  i^i  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) ) ) )
17 incom 3533 . . . . . 6  |-  ( ( ( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) )  i^i  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) ) )  =  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) )  i^i  (
( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
1816, 17syl6eq 2484 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( B  /  (
2 ^ D ) ) (,) ( ( B  +  1 )  /  ( 2 ^ D ) ) )  i^i  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  + 
1 )  /  (
2 ^ C ) ) ) ) )
1918adantr 452 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  i^i  ( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) ) ) )
201zred 10375 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  A  e.  RR )
2120recnd 9114 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  A  e.  CC )
22 2nn 10133 . . . . . . . . . . . 12  |-  2  e.  NN
23 nnexpcl 11394 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  C  e.  NN0 )  -> 
( 2 ^ C
)  e.  NN )
2422, 2, 23sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ C
)  e.  NN )
2524nncnd 10016 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ C
)  e.  CC )
26 nnexpcl 11394 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  D  e.  NN0 )  -> 
( 2 ^ D
)  e.  NN )
2722, 10, 26sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ D
)  e.  NN )
2827nncnd 10016 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ D
)  e.  CC )
2924nnne0d 10044 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ C
)  =/=  0 )
3021, 25, 28, 29div13d 9814 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  =  ( ( ( 2 ^ D
)  /  ( 2 ^ C ) )  x.  A ) )
31 2cn 10070 . . . . . . . . . . . . 13  |-  2  e.  CC
3231a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
2  e.  CC )
33 2ne0 10083 . . . . . . . . . . . . 13  |-  2  =/=  0
3433a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
2  =/=  0 )
352nn0zd 10373 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  C  e.  ZZ )
3610nn0zd 10373 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  D  e.  ZZ )
3732, 34, 35, 36expsubd 11534 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ ( D  -  C )
)  =  ( ( 2 ^ D )  /  ( 2 ^ C ) ) )
38 2z 10312 . . . . . . . . . . . 12  |-  2  e.  ZZ
39 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  C  <_  D )
40 znn0sub 10323 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  <_  D  <->  ( D  -  C )  e.  NN0 ) )
4135, 36, 40syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( C  <_  D  <->  ( D  -  C )  e.  NN0 ) )
4239, 41mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( D  -  C
)  e.  NN0 )
43 zexpcl 11396 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  ( D  -  C
)  e.  NN0 )  ->  ( 2 ^ ( D  -  C )
)  e.  ZZ )
4438, 42, 43sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ ( D  -  C )
)  e.  ZZ )
4537, 44eqeltrrd 2511 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( 2 ^ D )  /  (
2 ^ C ) )  e.  ZZ )
4645, 1zmulcld 10381 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( 2 ^ D )  / 
( 2 ^ C
) )  x.  A
)  e.  ZZ )
4730, 46eqeltrd 2510 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )
48 zltp1le 10325 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  ( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )  ->  ( B  < 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  <->  ( B  + 
1 )  <_  (
( A  /  (
2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
499, 47, 48syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  <  (
( A  /  (
2 ^ C ) )  x.  ( 2 ^ D ) )  <-> 
( B  +  1 )  <_  ( ( A  /  ( 2 ^ C ) )  x.  ( 2 ^ D
) ) ) )
509zred 10375 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  B  e.  RR )
5120, 24nndivred 10048 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  /  (
2 ^ C ) )  e.  RR )
5227nnred 10015 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ D
)  e.  RR )
5327nngt0d 10043 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
0  <  ( 2 ^ D ) )
54 ltdivmul2 9885 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( A  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( ( B  /  ( 2 ^ D ) )  < 
( A  /  (
2 ^ C ) )  <->  B  <  ( ( A  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
5550, 51, 52, 53, 54syl112anc 1188 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  ( A  /  ( 2 ^ C ) )  <->  B  <  ( ( A  /  (
2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
56 peano2re 9239 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
5750, 56syl 16 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  +  1 )  e.  RR )
58 ledivmul2 9887 . . . . . . . 8  |-  ( ( ( B  +  1 )  e.  RR  /\  ( A  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( (
( B  +  1 )  /  ( 2 ^ D ) )  <_  ( A  / 
( 2 ^ C
) )  <->  ( B  +  1 )  <_ 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) ) ) )
5957, 51, 52, 53, 58syl112anc 1188 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  ( A  /  ( 2 ^ C ) )  <->  ( B  +  1 )  <_ 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) ) ) )
6049, 55, 593bitr4d 277 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  ( A  /  ( 2 ^ C ) )  <->  ( ( B  +  1 )  /  ( 2 ^ D ) )  <_ 
( A  /  (
2 ^ C ) ) ) )
6150, 27nndivred 10048 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  /  (
2 ^ D ) )  e.  RR )
6261rexrd 9134 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  /  (
2 ^ D ) )  e.  RR* )
6357, 27nndivred 10048 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR )
6463rexrd 9134 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR* )
6551rexrd 9134 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  /  (
2 ^ C ) )  e.  RR* )
66 peano2re 9239 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
6720, 66syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  +  1 )  e.  RR )
6867, 24nndivred 10048 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR )
6968rexrd 9134 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )
70 ioodisj 11026 . . . . . . . 8  |-  ( ( ( ( ( B  /  ( 2 ^ D ) )  e. 
RR*  /\  ( ( B  +  1 )  /  ( 2 ^ D ) )  e. 
RR* )  /\  (
( A  /  (
2 ^ C ) )  e.  RR*  /\  (
( A  +  1 )  /  ( 2 ^ C ) )  e.  RR* ) )  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  <_  ( A  /  ( 2 ^ C ) ) )  ->  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  i^i  ( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) )
7170ex 424 . . . . . . 7  |-  ( ( ( ( B  / 
( 2 ^ D
) )  e.  RR*  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR* )  /\  ( ( A  / 
( 2 ^ C
) )  e.  RR*  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )
)  ->  ( (
( B  +  1 )  /  ( 2 ^ D ) )  <_  ( A  / 
( 2 ^ C
) )  ->  (
( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) )  i^i  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) ) )  =  (/) ) )
7262, 64, 65, 69, 71syl22anc 1185 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  ( A  /  ( 2 ^ C ) )  -> 
( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) )  i^i  (
( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) ) )
7360, 72sylbid 207 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  ( A  /  ( 2 ^ C ) )  -> 
( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) )  i^i  (
( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) ) )
7473imp 419 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  i^i  ( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) )
7519, 74eqtrd 2468 . . 3  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) )
76 3mix3 1128 . . 3  |-  ( ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/)  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
7775, 76syl 16 . 2  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
7851adantr 452 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( A  /  ( 2 ^ C ) )  e.  RR )
7968adantr 452 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( A  +  1 )  /  ( 2 ^ C ) )  e.  RR )
80 simprl 733 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) ) )
8167recnd 9114 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  +  1 )  e.  CC )
8281, 25, 28, 29div13d 9814 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  =  ( ( ( 2 ^ D
)  /  ( 2 ^ C ) )  x.  ( A  + 
1 ) ) )
831peano2zd 10378 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  +  1 )  e.  ZZ )
8445, 83zmulcld 10381 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( 2 ^ D )  / 
( 2 ^ C
) )  x.  ( A  +  1 ) )  e.  ZZ )
8582, 84eqeltrd 2510 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )
86 zltp1le 10325 . . . . . . . . . . 11  |-  ( ( B  e.  ZZ  /\  ( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )  ->  ( B  < 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  <->  ( B  + 
1 )  <_  (
( ( A  + 
1 )  /  (
2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
879, 85, 86syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  <  (
( ( A  + 
1 )  /  (
2 ^ C ) )  x.  ( 2 ^ D ) )  <-> 
( B  +  1 )  <_  ( (
( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
88 ltdivmul2 9885 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( ( B  /  ( 2 ^ D ) )  < 
( ( A  + 
1 )  /  (
2 ^ C ) )  <->  B  <  ( ( ( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
8950, 68, 52, 53, 88syl112anc 1188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  (
( A  +  1 )  /  ( 2 ^ C ) )  <-> 
B  <  ( (
( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
90 ledivmul2 9887 . . . . . . . . . . 11  |-  ( ( ( B  +  1 )  e.  RR  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( (
( B  +  1 )  /  ( 2 ^ D ) )  <_  ( ( A  +  1 )  / 
( 2 ^ C
) )  <->  ( B  +  1 )  <_ 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) ) ) )
9157, 68, 52, 53, 90syl112anc 1188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  (
( A  +  1 )  /  ( 2 ^ C ) )  <-> 
( B  +  1 )  <_  ( (
( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
9287, 89, 913bitr4d 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  (
( A  +  1 )  /  ( 2 ^ C ) )  <-> 
( ( B  + 
1 )  /  (
2 ^ D ) )  <_  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
9392biimpa 471 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) )  ->  ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  (
( A  +  1 )  /  ( 2 ^ C ) ) )
9493adantrl 697 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( B  +  1 )  /  ( 2 ^ D ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) ) )
95 iccss 10978 . . . . . . 7  |-  ( ( ( ( A  / 
( 2 ^ C
) )  e.  RR  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR )  /\  ( ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) )  /\  ( ( B  +  1 )  /  ( 2 ^ D ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) ) ) )  -> 
( ( B  / 
( 2 ^ D
) ) [,] (
( B  +  1 )  /  ( 2 ^ D ) ) )  C_  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
9678, 79, 80, 94, 95syl22anc 1185 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  + 
1 )  /  (
2 ^ D ) ) )  C_  (
( A  /  (
2 ^ C ) ) [,] ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
9712fveq2d 5732 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( B F D ) )  =  ( [,] `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
)
98 df-ov 6084 . . . . . . . 8  |-  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  +  1 )  / 
( 2 ^ D
) ) )  =  ( [,] `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
9997, 98syl6eqr 2486 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( B F D ) )  =  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  + 
1 )  /  (
2 ^ D ) ) ) )
10099adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( [,] `  ( B F D ) )  =  ( ( B  /  (
2 ^ D ) ) [,] ( ( B  +  1 )  /  ( 2 ^ D ) ) ) )
1015fveq2d 5732 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( A F C ) )  =  ( [,] `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
)
102 df-ov 6084 . . . . . . . 8  |-  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  +  1 )  / 
( 2 ^ C
) ) )  =  ( [,] `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
103101, 102syl6eqr 2486 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( A F C ) )  =  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
104103adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( [,] `  ( A F C ) )  =  ( ( A  /  (
2 ^ C ) ) [,] ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
10596, 100, 1043sstr4d 3391 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( [,] `  ( B F D ) )  C_  ( [,] `  ( A F C ) ) )
106 3mix2 1127 . . . . 5  |-  ( ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
107105, 106syl 16 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
108107anassrs 630 . . 3  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  /\  C  <_  D )  /\  ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) ) )  /\  ( B  /  ( 2 ^ D ) )  < 
( ( A  + 
1 )  /  (
2 ^ C ) ) )  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
10916adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  i^i  ( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) ) ) )
110 ioodisj 11026 . . . . . . . . 9  |-  ( ( ( ( ( A  /  ( 2 ^ C ) )  e. 
RR*  /\  ( ( A  +  1 )  /  ( 2 ^ C ) )  e. 
RR* )  /\  (
( B  /  (
2 ^ D ) )  e.  RR*  /\  (
( B  +  1 )  /  ( 2 ^ D ) )  e.  RR* ) )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  i^i  ( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) ) )  =  (/) )
111110ex 424 . . . . . . . 8  |-  ( ( ( ( A  / 
( 2 ^ C
) )  e.  RR*  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )  /\  ( ( B  / 
( 2 ^ D
) )  e.  RR*  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR* )
)  ->  ( (
( A  +  1 )  /  ( 2 ^ C ) )  <_  ( B  / 
( 2 ^ D
) )  ->  (
( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) )  i^i  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) ) )  =  (/) ) )
11265, 69, 62, 64, 111syl22anc 1185 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  -> 
( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  + 
1 )  /  (
2 ^ C ) ) )  i^i  (
( B  /  (
2 ^ D ) ) (,) ( ( B  +  1 )  /  ( 2 ^ D ) ) ) )  =  (/) ) )
113112imp 419 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  i^i  ( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) ) )  =  (/) )
114109, 113eqtrd 2468 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) )
115114, 76syl 16 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
116115adantlr 696 . . 3  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  /\  C  <_  D )  /\  ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) ) )  /\  (
( A  +  1 )  /  ( 2 ^ C ) )  <_  ( B  / 
( 2 ^ D
) ) )  -> 
( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
11761adantr 452 . . 3  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( A  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( B  / 
( 2 ^ D
) )  e.  RR )
11868adantr 452 . . 3  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( A  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( A  +  1 )  / 
( 2 ^ C
) )  e.  RR )
119108, 116, 117, 118ltlecasei 9181 . 2  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( A  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
12077, 119, 61, 51ltlecasei 9181 1  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725    =/= wne 2599    i^i cin 3319    C_ wss 3320   (/)c0 3628   <.cop 3817   class class class wbr 4212   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   (,)cioo 10916   [,]cicc 10919   ^cexp 11382
This theorem is referenced by:  dyaddisj  19488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-ioo 10920  df-icc 10923  df-seq 11324  df-exp 11383
  Copyright terms: Public domain W3C validator