MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Unicode version

Theorem dyaddisjlem 19448
Description: Lemma for dyaddisj 19449. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyaddisjlem  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
Distinct variable groups:    x, y, B    x, C, y    x, A, y    x, D, y   
x, F, y

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  A  e.  ZZ )
2 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  C  e.  NN0 )
3 dyadmbl.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
43dyadval 19445 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  C  e.  NN0 )  -> 
( A F C )  =  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  + 
1 )  /  (
2 ^ C ) ) >. )
51, 2, 4syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A F C )  =  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  + 
1 )  /  (
2 ^ C ) ) >. )
65fveq2d 5699 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( A F C ) )  =  ( (,) `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
)
7 df-ov 6051 . . . . . . . 8  |-  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  =  ( (,) `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
86, 7syl6eqr 2462 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( A F C ) )  =  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
9 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  B  e.  ZZ )
10 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  D  e.  NN0 )
113dyadval 19445 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  D  e.  NN0 )  -> 
( B F D )  =  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  + 
1 )  /  (
2 ^ D ) ) >. )
129, 10, 11syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B F D )  =  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  + 
1 )  /  (
2 ^ D ) ) >. )
1312fveq2d 5699 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( B F D ) )  =  ( (,) `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
)
14 df-ov 6051 . . . . . . . 8  |-  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  =  ( (,) `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
1513, 14syl6eqr 2462 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( (,) `  ( B F D ) )  =  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) ) )
168, 15ineq12d 3511 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) )  i^i  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) ) ) )
17 incom 3501 . . . . . 6  |-  ( ( ( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) )  i^i  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) ) )  =  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) )  i^i  (
( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
1816, 17syl6eq 2460 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( B  /  (
2 ^ D ) ) (,) ( ( B  +  1 )  /  ( 2 ^ D ) ) )  i^i  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  + 
1 )  /  (
2 ^ C ) ) ) ) )
1918adantr 452 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  i^i  ( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) ) ) )
201zred 10339 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  A  e.  RR )
2120recnd 9078 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  A  e.  CC )
22 2nn 10097 . . . . . . . . . . . 12  |-  2  e.  NN
23 nnexpcl 11357 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  C  e.  NN0 )  -> 
( 2 ^ C
)  e.  NN )
2422, 2, 23sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ C
)  e.  NN )
2524nncnd 9980 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ C
)  e.  CC )
26 nnexpcl 11357 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  D  e.  NN0 )  -> 
( 2 ^ D
)  e.  NN )
2722, 10, 26sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ D
)  e.  NN )
2827nncnd 9980 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ D
)  e.  CC )
2924nnne0d 10008 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ C
)  =/=  0 )
3021, 25, 28, 29div13d 9778 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  =  ( ( ( 2 ^ D
)  /  ( 2 ^ C ) )  x.  A ) )
31 2cn 10034 . . . . . . . . . . . . 13  |-  2  e.  CC
3231a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
2  e.  CC )
33 2ne0 10047 . . . . . . . . . . . . 13  |-  2  =/=  0
3433a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
2  =/=  0 )
352nn0zd 10337 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  C  e.  ZZ )
3610nn0zd 10337 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  D  e.  ZZ )
3732, 34, 35, 36expsubd 11497 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ ( D  -  C )
)  =  ( ( 2 ^ D )  /  ( 2 ^ C ) ) )
38 2z 10276 . . . . . . . . . . . 12  |-  2  e.  ZZ
39 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  C  <_  D )
40 znn0sub 10287 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  <_  D  <->  ( D  -  C )  e.  NN0 ) )
4135, 36, 40syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( C  <_  D  <->  ( D  -  C )  e.  NN0 ) )
4239, 41mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( D  -  C
)  e.  NN0 )
43 zexpcl 11359 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  ( D  -  C
)  e.  NN0 )  ->  ( 2 ^ ( D  -  C )
)  e.  ZZ )
4438, 42, 43sylancr 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ ( D  -  C )
)  e.  ZZ )
4537, 44eqeltrrd 2487 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( 2 ^ D )  /  (
2 ^ C ) )  e.  ZZ )
4645, 1zmulcld 10345 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( 2 ^ D )  / 
( 2 ^ C
) )  x.  A
)  e.  ZZ )
4730, 46eqeltrd 2486 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )
48 zltp1le 10289 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  ( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )  ->  ( B  < 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  <->  ( B  + 
1 )  <_  (
( A  /  (
2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
499, 47, 48syl2anc 643 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  <  (
( A  /  (
2 ^ C ) )  x.  ( 2 ^ D ) )  <-> 
( B  +  1 )  <_  ( ( A  /  ( 2 ^ C ) )  x.  ( 2 ^ D
) ) ) )
509zred 10339 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  ->  B  e.  RR )
5120, 24nndivred 10012 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  /  (
2 ^ C ) )  e.  RR )
5227nnred 9979 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( 2 ^ D
)  e.  RR )
5327nngt0d 10007 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
0  <  ( 2 ^ D ) )
54 ltdivmul2 9849 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( A  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( ( B  /  ( 2 ^ D ) )  < 
( A  /  (
2 ^ C ) )  <->  B  <  ( ( A  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
5550, 51, 52, 53, 54syl112anc 1188 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  ( A  /  ( 2 ^ C ) )  <->  B  <  ( ( A  /  (
2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
56 peano2re 9203 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
5750, 56syl 16 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  +  1 )  e.  RR )
58 ledivmul2 9851 . . . . . . . 8  |-  ( ( ( B  +  1 )  e.  RR  /\  ( A  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( (
( B  +  1 )  /  ( 2 ^ D ) )  <_  ( A  / 
( 2 ^ C
) )  <->  ( B  +  1 )  <_ 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) ) ) )
5957, 51, 52, 53, 58syl112anc 1188 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  ( A  /  ( 2 ^ C ) )  <->  ( B  +  1 )  <_ 
( ( A  / 
( 2 ^ C
) )  x.  (
2 ^ D ) ) ) )
6049, 55, 593bitr4d 277 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  ( A  /  ( 2 ^ C ) )  <->  ( ( B  +  1 )  /  ( 2 ^ D ) )  <_ 
( A  /  (
2 ^ C ) ) ) )
6150, 27nndivred 10012 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  /  (
2 ^ D ) )  e.  RR )
6261rexrd 9098 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  /  (
2 ^ D ) )  e.  RR* )
6357, 27nndivred 10012 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR )
6463rexrd 9098 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR* )
6551rexrd 9098 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  /  (
2 ^ C ) )  e.  RR* )
66 peano2re 9203 . . . . . . . . . 10  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
6720, 66syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  +  1 )  e.  RR )
6867, 24nndivred 10012 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR )
6968rexrd 9098 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )
70 ioodisj 10990 . . . . . . . 8  |-  ( ( ( ( ( B  /  ( 2 ^ D ) )  e. 
RR*  /\  ( ( B  +  1 )  /  ( 2 ^ D ) )  e. 
RR* )  /\  (
( A  /  (
2 ^ C ) )  e.  RR*  /\  (
( A  +  1 )  /  ( 2 ^ C ) )  e.  RR* ) )  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  <_  ( A  /  ( 2 ^ C ) ) )  ->  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  i^i  ( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) )
7170ex 424 . . . . . . 7  |-  ( ( ( ( B  / 
( 2 ^ D
) )  e.  RR*  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR* )  /\  ( ( A  / 
( 2 ^ C
) )  e.  RR*  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )
)  ->  ( (
( B  +  1 )  /  ( 2 ^ D ) )  <_  ( A  / 
( 2 ^ C
) )  ->  (
( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) )  i^i  ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) ) )  =  (/) ) )
7262, 64, 65, 69, 71syl22anc 1185 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  ( A  /  ( 2 ^ C ) )  -> 
( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) )  i^i  (
( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) ) )
7360, 72sylbid 207 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  ( A  /  ( 2 ^ C ) )  -> 
( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  + 
1 )  /  (
2 ^ D ) ) )  i^i  (
( A  /  (
2 ^ C ) ) (,) ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) ) )
7473imp 419 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) )  i^i  ( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) ) )  =  (/) )
7519, 74eqtrd 2444 . . 3  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) )
76 3mix3 1128 . . 3  |-  ( ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/)  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
7775, 76syl 16 . 2  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( A  /  ( 2 ^ C ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
7851adantr 452 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( A  /  ( 2 ^ C ) )  e.  RR )
7968adantr 452 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( A  +  1 )  /  ( 2 ^ C ) )  e.  RR )
80 simprl 733 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) ) )
8167recnd 9078 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  +  1 )  e.  CC )
8281, 25, 28, 29div13d 9778 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  =  ( ( ( 2 ^ D
)  /  ( 2 ^ C ) )  x.  ( A  + 
1 ) ) )
831peano2zd 10342 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( A  +  1 )  e.  ZZ )
8445, 83zmulcld 10345 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( 2 ^ D )  / 
( 2 ^ C
) )  x.  ( A  +  1 ) )  e.  ZZ )
8582, 84eqeltrd 2486 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )
86 zltp1le 10289 . . . . . . . . . . 11  |-  ( ( B  e.  ZZ  /\  ( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  e.  ZZ )  ->  ( B  < 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) )  <->  ( B  + 
1 )  <_  (
( ( A  + 
1 )  /  (
2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
879, 85, 86syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( B  <  (
( ( A  + 
1 )  /  (
2 ^ C ) )  x.  ( 2 ^ D ) )  <-> 
( B  +  1 )  <_  ( (
( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
88 ltdivmul2 9849 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( ( B  /  ( 2 ^ D ) )  < 
( ( A  + 
1 )  /  (
2 ^ C ) )  <->  B  <  ( ( ( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
8950, 68, 52, 53, 88syl112anc 1188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  (
( A  +  1 )  /  ( 2 ^ C ) )  <-> 
B  <  ( (
( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
90 ledivmul2 9851 . . . . . . . . . . 11  |-  ( ( ( B  +  1 )  e.  RR  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR  /\  ( ( 2 ^ D )  e.  RR  /\  0  <  ( 2 ^ D ) ) )  ->  ( (
( B  +  1 )  /  ( 2 ^ D ) )  <_  ( ( A  +  1 )  / 
( 2 ^ C
) )  <->  ( B  +  1 )  <_ 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  x.  (
2 ^ D ) ) ) )
9157, 68, 52, 53, 90syl112anc 1188 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  (
( A  +  1 )  /  ( 2 ^ C ) )  <-> 
( B  +  1 )  <_  ( (
( A  +  1 )  /  ( 2 ^ C ) )  x.  ( 2 ^ D ) ) ) )
9287, 89, 913bitr4d 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( B  / 
( 2 ^ D
) )  <  (
( A  +  1 )  /  ( 2 ^ C ) )  <-> 
( ( B  + 
1 )  /  (
2 ^ D ) )  <_  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
9392biimpa 471 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) )  ->  ( ( B  +  1 )  / 
( 2 ^ D
) )  <_  (
( A  +  1 )  /  ( 2 ^ C ) ) )
9493adantrl 697 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( B  +  1 )  /  ( 2 ^ D ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) ) )
95 iccss 10942 . . . . . . 7  |-  ( ( ( ( A  / 
( 2 ^ C
) )  e.  RR  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR )  /\  ( ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) )  /\  ( ( B  +  1 )  /  ( 2 ^ D ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) ) ) )  -> 
( ( B  / 
( 2 ^ D
) ) [,] (
( B  +  1 )  /  ( 2 ^ D ) ) )  C_  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
9678, 79, 80, 94, 95syl22anc 1185 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  + 
1 )  /  (
2 ^ D ) ) )  C_  (
( A  /  (
2 ^ C ) ) [,] ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
9712fveq2d 5699 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( B F D ) )  =  ( [,] `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
)
98 df-ov 6051 . . . . . . . 8  |-  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  +  1 )  / 
( 2 ^ D
) ) )  =  ( [,] `  <. ( B  /  ( 2 ^ D ) ) ,  ( ( B  +  1 )  / 
( 2 ^ D
) ) >. )
9997, 98syl6eqr 2462 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( B F D ) )  =  ( ( B  /  ( 2 ^ D ) ) [,] ( ( B  + 
1 )  /  (
2 ^ D ) ) ) )
10099adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( [,] `  ( B F D ) )  =  ( ( B  /  (
2 ^ D ) ) [,] ( ( B  +  1 )  /  ( 2 ^ D ) ) ) )
1015fveq2d 5699 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( A F C ) )  =  ( [,] `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
)
102 df-ov 6051 . . . . . . . 8  |-  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  +  1 )  / 
( 2 ^ C
) ) )  =  ( [,] `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
103101, 102syl6eqr 2462 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( [,] `  ( A F C ) )  =  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
104103adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( [,] `  ( A F C ) )  =  ( ( A  /  (
2 ^ C ) ) [,] ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
10596, 100, 1043sstr4d 3359 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( [,] `  ( B F D ) )  C_  ( [,] `  ( A F C ) ) )
106 3mix2 1127 . . . . 5  |-  ( ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
107105, 106syl 16 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  /\  ( B  /  (
2 ^ D ) )  <  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
108107anassrs 630 . . 3  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  /\  C  <_  D )  /\  ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) ) )  /\  ( B  /  ( 2 ^ D ) )  < 
( ( A  + 
1 )  /  (
2 ^ C ) ) )  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
10916adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  ( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  i^i  ( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) ) ) )
110 ioodisj 10990 . . . . . . . . 9  |-  ( ( ( ( ( A  /  ( 2 ^ C ) )  e. 
RR*  /\  ( ( A  +  1 )  /  ( 2 ^ C ) )  e. 
RR* )  /\  (
( B  /  (
2 ^ D ) )  e.  RR*  /\  (
( B  +  1 )  /  ( 2 ^ D ) )  e.  RR* ) )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  i^i  ( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) ) )  =  (/) )
111110ex 424 . . . . . . . 8  |-  ( ( ( ( A  / 
( 2 ^ C
) )  e.  RR*  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )  /\  ( ( B  / 
( 2 ^ D
) )  e.  RR*  /\  ( ( B  + 
1 )  /  (
2 ^ D ) )  e.  RR* )
)  ->  ( (
( A  +  1 )  /  ( 2 ^ C ) )  <_  ( B  / 
( 2 ^ D
) )  ->  (
( ( A  / 
( 2 ^ C
) ) (,) (
( A  +  1 )  /  ( 2 ^ C ) ) )  i^i  ( ( B  /  ( 2 ^ D ) ) (,) ( ( B  +  1 )  / 
( 2 ^ D
) ) ) )  =  (/) ) )
11265, 69, 62, 64, 111syl22anc 1185 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  <_  ( B  /  ( 2 ^ D ) )  -> 
( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  + 
1 )  /  (
2 ^ C ) ) )  i^i  (
( B  /  (
2 ^ D ) ) (,) ( ( B  +  1 )  /  ( 2 ^ D ) ) ) )  =  (/) ) )
113112imp 419 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( ( A  /  ( 2 ^ C ) ) (,) ( ( A  +  1 )  / 
( 2 ^ C
) ) )  i^i  ( ( B  / 
( 2 ^ D
) ) (,) (
( B  +  1 )  /  ( 2 ^ D ) ) ) )  =  (/) )
114109, 113eqtrd 2444 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) )
115114, 76syl 16 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
116115adantlr 696 . . 3  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 )
)  /\  C  <_  D )  /\  ( A  /  ( 2 ^ C ) )  <_ 
( B  /  (
2 ^ D ) ) )  /\  (
( A  +  1 )  /  ( 2 ^ C ) )  <_  ( B  / 
( 2 ^ D
) ) )  -> 
( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
11761adantr 452 . . 3  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( A  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( B  / 
( 2 ^ D
) )  e.  RR )
11868adantr 452 . . 3  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( A  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( A  +  1 )  / 
( 2 ^ C
) )  e.  RR )
119108, 116, 117, 118ltlecasei 9145 . 2  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  /\  ( A  /  (
2 ^ C ) )  <_  ( B  /  ( 2 ^ D ) ) )  ->  ( ( [,] `  ( A F C ) )  C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
12077, 119, 61, 51ltlecasei 9145 1  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  /\  C  <_  D )  -> 
( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  \/  ( [,] `  ( B F D ) ) 
C_  ( [,] `  ( A F C ) )  \/  ( ( (,) `  ( A F C ) )  i^i  ( (,) `  ( B F D ) ) )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1721    =/= wne 2575    i^i cin 3287    C_ wss 3288   (/)c0 3596   <.cop 3785   class class class wbr 4180   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255    / cdiv 9641   NNcn 9964   2c2 10013   NN0cn0 10185   ZZcz 10246   (,)cioo 10880   [,]cicc 10883   ^cexp 11345
This theorem is referenced by:  dyaddisj  19449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-n0 10186  df-z 10247  df-uz 10453  df-ioo 10884  df-icc 10887  df-seq 11287  df-exp 11346
  Copyright terms: Public domain W3C validator