MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmax Unicode version

Theorem dyadmax 18953
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
dyadmax  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) )
Distinct variable groups:    x, y    z, w, x, y, A   
w, F, x, y, z

Proof of Theorem dyadmax
Dummy variables  c 
d  a  b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltweuz 11024 . . . . 5  |-  <  We  ( ZZ>= `  0 )
21a1i 10 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  <  We  ( ZZ>= `  0 )
)
3 nn0ex 9971 . . . . . 6  |-  NN0  e.  _V
43rabex 4165 . . . . 5  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V
54a1i 10 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V )
6 ssrab2 3258 . . . . . 6  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  NN0
7 nn0uz 10262 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
86, 7sseqtri 3210 . . . . 5  |-  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  ( ZZ>= ` 
0 )
98a1i 10 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  C_  ( ZZ>= ` 
0 ) )
10 id 19 . . . . . . 7  |-  ( A  =/=  (/)  ->  A  =/=  (/) )
11 dyadmbl.1 . . . . . . . . . . . . 13  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
1211dyadf 18946 . . . . . . . . . . . 12  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
13 ffn 5389 . . . . . . . . . . . 12  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
14 ovelrn 5996 . . . . . . . . . . . 12  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( z  e.  ran  F  <->  E. a  e.  ZZ  E. n  e. 
NN0  z  =  ( a F n ) ) )
1512, 13, 14mp2b 9 . . . . . . . . . . 11  |-  ( z  e.  ran  F  <->  E. a  e.  ZZ  E. n  e. 
NN0  z  =  ( a F n ) )
16 rexcom 2701 . . . . . . . . . . 11  |-  ( E. a  e.  ZZ  E. n  e.  NN0  z  =  ( a F n )  <->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1715, 16bitri 240 . . . . . . . . . 10  |-  ( z  e.  ran  F  <->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1817biimpi 186 . . . . . . . . 9  |-  ( z  e.  ran  F  ->  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
1918rgen 2608 . . . . . . . 8  |-  A. z  e.  ran  F E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )
20 ssralv 3237 . . . . . . . 8  |-  ( A 
C_  ran  F  ->  ( A. z  e.  ran  F E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )  ->  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) ) )
2119, 20mpi 16 . . . . . . 7  |-  ( A 
C_  ran  F  ->  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
22 r19.2z 3543 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )  ->  E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
2310, 21, 22syl2anr 464 . . . . . 6  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n ) )
24 rexcom 2701 . . . . . 6  |-  ( E. z  e.  A  E. n  e.  NN0  E. a  e.  ZZ  z  =  ( a F n )  <->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
2523, 24sylib 188 . . . . 5  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
26 rabn0 3474 . . . . 5  |-  ( { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/)  <->  E. n  e.  NN0  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) )
2725, 26sylibr 203 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/) )
28 wereu 4389 . . . 4  |-  ( (  <  We  ( ZZ>= ` 
0 )  /\  ( { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  e.  _V  /\  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } 
C_  ( ZZ>= `  0
)  /\  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  =/=  (/) ) )  ->  E! c  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
292, 5, 9, 27, 28syl13anc 1184 . . 3  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E! c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
30 reurex 2754 . . 3  |-  ( E! c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. c  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
3129, 30syl 15 . 2  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e.  {
n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c
)
32 oveq2 5866 . . . . . . 7  |-  ( n  =  c  ->  (
a F n )  =  ( a F c ) )
3332eqeq2d 2294 . . . . . 6  |-  ( n  =  c  ->  (
z  =  ( a F n )  <->  z  =  ( a F c ) ) )
34332rexbidv 2586 . . . . 5  |-  ( n  =  c  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) ) )
3534elrab 2923 . . . 4  |-  ( c  e.  { n  e. 
NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  <->  ( c  e. 
NN0  /\  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) ) )
36 eqeq1 2289 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  =  ( a F n )  <->  w  =  ( a F n ) ) )
37 oveq1 5865 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a F n )  =  ( b F n ) )
3837eqeq2d 2294 . . . . . . . . . 10  |-  ( a  =  b  ->  (
w  =  ( a F n )  <->  w  =  ( b F n ) ) )
3936, 38cbvrex2v 2773 . . . . . . . . 9  |-  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F n ) )
40 oveq2 5866 . . . . . . . . . . 11  |-  ( n  =  d  ->  (
b F n )  =  ( b F d ) )
4140eqeq2d 2294 . . . . . . . . . 10  |-  ( n  =  d  ->  (
w  =  ( b F n )  <->  w  =  ( b F d ) ) )
42412rexbidv 2586 . . . . . . . . 9  |-  ( n  =  d  ->  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d ) ) )
4339, 42syl5bb 248 . . . . . . . 8  |-  ( n  =  d  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n )  <->  E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d ) ) )
4443ralrab 2927 . . . . . . 7  |-  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  < 
c  <->  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
45 r19.23v 2659 . . . . . . . . . . . . . . . . 17  |-  ( A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <-> 
( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
4645ralbii 2567 . . . . . . . . . . . . . . . 16  |-  ( A. d  e.  NN0  A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
47 ralcom 2700 . . . . . . . . . . . . . . . 16  |-  ( A. d  e.  NN0  A. w  e.  A  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
4846, 47bitr3i 242 . . . . . . . . . . . . . . 15  |-  ( A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  <->  A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )
49 simplll 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  A  C_  ran  F )
5049sselda 3180 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  w  e.  ran  F )
51 ovelrn 5996 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  Fn  ( ZZ  X.  NN0 )  ->  ( w  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) ) )
5212, 13, 51mp2b 9 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ran  F  <->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) )
5350, 52sylib 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  E. b  e.  ZZ  E. d  e. 
NN0  w  =  ( b F d ) )
54 rexcom 2701 . . . . . . . . . . . . . . . . . . 19  |-  ( E. b  e.  ZZ  E. d  e.  NN0  w  =  ( b F d )  <->  E. d  e.  NN0  E. b  e.  ZZ  w  =  ( b F d ) )
55 r19.29 2683 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. d  e. 
NN0  E. b  e.  ZZ  w  =  ( b F d ) )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) )
5655expcom 424 . . . . . . . . . . . . . . . . . . 19  |-  ( E. d  e.  NN0  E. b  e.  ZZ  w  =  ( b F d )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
5754, 56sylbi 187 . . . . . . . . . . . . . . . . . 18  |-  ( E. b  e.  ZZ  E. d  e.  NN0  w  =  ( b F d )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
5853, 57syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) ) ) )
59 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  a  e.  ZZ )
6059ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  a  e.  ZZ )
61 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  b  e.  ZZ )
62 simpllr 735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  c  e.  NN0 )
6362ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  c  e.  NN0 )
64 simplrl 736 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  d  e.  NN0 )
65 simprl 732 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  -.  d  <  c )
66 simprr 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) )
6711, 60, 61, 63, 64, 65, 66dyadmaxlem 18952 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  (
a  =  b  /\  c  =  d )
)
68 oveq12 5867 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  =  b  /\  c  =  d )  ->  ( a F c )  =  ( b F d ) )
6967, 68syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  /\  ( -.  d  <  c  /\  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )  ->  (
a F c )  =  ( b F d ) )
7069exp32 588 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  ->  ( -.  d  <  c  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  ->  (
a F c )  =  ( b F d ) ) ) )
71 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  =  ( b F d )  ->  ( [,] `  w )  =  ( [,] `  (
b F d ) ) )
7271sseq2d 3206 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( b F d )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  w )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) ) ) )
73 eqeq2 2292 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( b F d )  ->  (
( a F c )  =  w  <->  ( a F c )  =  ( b F d ) ) )
7472, 73imbi12d 311 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( b F d )  ->  (
( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  ( b F d ) )  ->  ( a F c )  =  ( b F d ) ) ) )
7574imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( b F d )  ->  (
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) )  <->  ( -.  d  <  c  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  ( b F d ) )  ->  (
a F c )  =  ( b F d ) ) ) ) )
7670, 75syl5ibrcom 213 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  (
d  e.  NN0  /\  b  e.  ZZ )
)  ->  ( w  =  ( b F d )  ->  ( -.  d  <  c  -> 
( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) ) )
7776anassrs 629 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  /\  w  e.  A )  /\  d  e.  NN0 )  /\  b  e.  ZZ )  ->  (
w  =  ( b F d )  -> 
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) ) )
7877rexlimdva 2667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  ( E. b  e.  ZZ  w  =  ( b F d )  -> 
( -.  d  < 
c  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) ) )
7978a2d 23 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  (
( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( E. b  e.  ZZ  w  =  ( b F d )  ->  (
( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) ) )
8079imp3a 420 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  /\  d  e.  NN0 )  ->  (
( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
8180rexlimdva 2667 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( E. d  e.  NN0  ( ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  /\  E. b  e.  ZZ  w  =  ( b F d ) )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
8258, 81syld 40 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  w  e.  A )  ->  ( A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  -> 
( a F c )  =  w ) ) )
8382ralimdva 2621 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  ( A. w  e.  A  A. d  e.  NN0  ( E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) )
8448, 83syl5bi 208 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  ->  ( A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) ) )
8584imp 418 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  (
z  e.  A  /\  a  e.  ZZ )
)  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  ->  A. w  e.  A  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) )
8685an32s 779 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  ->  A. w  e.  A  ( ( [,] `  (
a F c ) )  C_  ( [,] `  w )  ->  (
a F c )  =  w ) )
87 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a F c )  ->  ( [,] `  z )  =  ( [,] `  (
a F c ) ) )
8887sseq1d 3205 . . . . . . . . . . . . . 14  |-  ( z  =  ( a F c )  ->  (
( [,] `  z
)  C_  ( [,] `  w )  <->  ( [,] `  ( a F c ) )  C_  ( [,] `  w ) ) )
89 eqeq1 2289 . . . . . . . . . . . . . 14  |-  ( z  =  ( a F c )  ->  (
z  =  w  <->  ( a F c )  =  w ) )
9088, 89imbi12d 311 . . . . . . . . . . . . 13  |-  ( z  =  ( a F c )  ->  (
( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
9190ralbidv 2563 . . . . . . . . . . . 12  |-  ( z  =  ( a F c )  ->  ( A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w )  <->  A. w  e.  A  ( ( [,] `  ( a F c ) )  C_  ( [,] `  w )  ->  ( a F c )  =  w ) ) )
9286, 91syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  ( z  e.  A  /\  a  e.  ZZ ) )  -> 
( z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
9392anassrs 629 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  z  e.  A
)  /\  a  e.  ZZ )  ->  ( z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) )
9493rexlimdva 2667 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  /\  z  e.  A
)  ->  ( E. a  e.  ZZ  z  =  ( a F c )  ->  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) )
9594reximdva 2655 . . . . . . . 8  |-  ( ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  /\  A. d  e.  NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c ) )  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
9695ex 423 . . . . . . 7  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( A. d  e. 
NN0  ( E. w  e.  A  E. b  e.  ZZ  w  =  ( b F d )  ->  -.  d  <  c )  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9744, 96syl5bi 208 . . . . . 6  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  ( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9897com23 72 . . . . 5  |-  ( ( ( A  C_  ran  F  /\  A  =/=  (/) )  /\  c  e.  NN0 )  -> 
( E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c )  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
9998expimpd 586 . . . 4  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  (
( c  e.  NN0  /\ 
E. z  e.  A  E. a  e.  ZZ  z  =  ( a F c ) )  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
10035, 99syl5bi 208 . . 3  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  (
c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  ->  ( A. d  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  < 
c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) ) ) )
101100rexlimdv 2666 . 2  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  ( E. c  e.  { n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) } A. d  e. 
{ n  e.  NN0  |  E. z  e.  A  E. a  e.  ZZ  z  =  ( a F n ) }  -.  d  <  c  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z
)  C_  ( [,] `  w )  ->  z  =  w ) ) )
10231, 101mpd 14 1  |-  ( ( A  C_  ran  F  /\  A  =/=  (/) )  ->  E. z  e.  A  A. w  e.  A  ( ( [,] `  z )  C_  ( [,] `  w )  ->  z  =  w ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   E!wreu 2545   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   <.cop 3643   class class class wbr 4023    We wwe 4351    X. cxp 4687   ran crn 4690    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    / cdiv 9423   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   [,]cicc 10659   ^cexp 11104
This theorem is referenced by:  dyadmbllem  18954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-rest 13327  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-cmp 17114  df-ovol 18824
  Copyright terms: Public domain W3C validator