MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmaxlem Unicode version

Theorem dyadmaxlem 19450
Description: Lemma for dyadmax 19451. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
dyadmax.2  |-  ( ph  ->  A  e.  ZZ )
dyadmax.3  |-  ( ph  ->  B  e.  ZZ )
dyadmax.4  |-  ( ph  ->  C  e.  NN0 )
dyadmax.5  |-  ( ph  ->  D  e.  NN0 )
dyadmax.6  |-  ( ph  ->  -.  D  <  C
)
dyadmax.7  |-  ( ph  ->  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )
Assertion
Ref Expression
dyadmaxlem  |-  ( ph  ->  ( A  =  B  /\  C  =  D ) )
Distinct variable groups:    x, y, B    x, C, y    x, A, y    x, D, y   
x, F, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem dyadmaxlem
StepHypRef Expression
1 dyadmax.7 . . . . . . . . 9  |-  ( ph  ->  ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) ) )
2 dyadmax.2 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
3 dyadmax.4 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  NN0 )
4 dyadmbl.1 . . . . . . . . . . . . 13  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
54dyadval 19445 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  C  e.  NN0 )  -> 
( A F C )  =  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  + 
1 )  /  (
2 ^ C ) ) >. )
62, 3, 5syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( A F C )  =  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  + 
1 )  /  (
2 ^ C ) ) >. )
76fveq2d 5699 . . . . . . . . . 10  |-  ( ph  ->  ( [,] `  ( A F C ) )  =  ( [,] `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
)
8 df-ov 6051 . . . . . . . . . 10  |-  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  +  1 )  / 
( 2 ^ C
) ) )  =  ( [,] `  <. ( A  /  ( 2 ^ C ) ) ,  ( ( A  +  1 )  / 
( 2 ^ C
) ) >. )
97, 8syl6eqr 2462 . . . . . . . . 9  |-  ( ph  ->  ( [,] `  ( A F C ) )  =  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
10 dyadmax.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  ZZ )
11 dyadmax.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  NN0 )
124dyadss 19447 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  NN0 ) )  ->  (
( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  ->  D  <_  C
) )
132, 10, 3, 11, 12syl22anc 1185 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( [,] `  ( A F C ) ) 
C_  ( [,] `  ( B F D ) )  ->  D  <_  C
) )
141, 13mpd 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  D  <_  C )
15 dyadmax.6 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  D  <  C
)
1611nn0red 10239 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  RR )
173nn0red 10239 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  RR )
1816, 17eqleltd 9181 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( D  =  C  <-> 
( D  <_  C  /\  -.  D  <  C
) ) )
1914, 15, 18mpbir2and 889 . . . . . . . . . . . . 13  |-  ( ph  ->  D  =  C )
2019oveq2d 6064 . . . . . . . . . . . 12  |-  ( ph  ->  ( B F D )  =  ( B F C ) )
214dyadval 19445 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  C  e.  NN0 )  -> 
( B F C )  =  <. ( B  /  ( 2 ^ C ) ) ,  ( ( B  + 
1 )  /  (
2 ^ C ) ) >. )
2210, 3, 21syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( B F C )  =  <. ( B  /  ( 2 ^ C ) ) ,  ( ( B  + 
1 )  /  (
2 ^ C ) ) >. )
2320, 22eqtrd 2444 . . . . . . . . . . 11  |-  ( ph  ->  ( B F D )  =  <. ( B  /  ( 2 ^ C ) ) ,  ( ( B  + 
1 )  /  (
2 ^ C ) ) >. )
2423fveq2d 5699 . . . . . . . . . 10  |-  ( ph  ->  ( [,] `  ( B F D ) )  =  ( [,] `  <. ( B  /  ( 2 ^ C ) ) ,  ( ( B  +  1 )  / 
( 2 ^ C
) ) >. )
)
25 df-ov 6051 . . . . . . . . . 10  |-  ( ( B  /  ( 2 ^ C ) ) [,] ( ( B  +  1 )  / 
( 2 ^ C
) ) )  =  ( [,] `  <. ( B  /  ( 2 ^ C ) ) ,  ( ( B  +  1 )  / 
( 2 ^ C
) ) >. )
2624, 25syl6eqr 2462 . . . . . . . . 9  |-  ( ph  ->  ( [,] `  ( B F D ) )  =  ( ( B  /  ( 2 ^ C ) ) [,] ( ( B  + 
1 )  /  (
2 ^ C ) ) ) )
271, 9, 263sstr3d 3358 . . . . . . . 8  |-  ( ph  ->  ( ( A  / 
( 2 ^ C
) ) [,] (
( A  +  1 )  /  ( 2 ^ C ) ) )  C_  ( ( B  /  ( 2 ^ C ) ) [,] ( ( B  + 
1 )  /  (
2 ^ C ) ) ) )
282zred 10339 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
29 2nn 10097 . . . . . . . . . . . 12  |-  2  e.  NN
30 nnexpcl 11357 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  C  e.  NN0 )  -> 
( 2 ^ C
)  e.  NN )
3129, 3, 30sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( 2 ^ C
)  e.  NN )
3228, 31nndivred 10012 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  (
2 ^ C ) )  e.  RR )
3332rexrd 9098 . . . . . . . . 9  |-  ( ph  ->  ( A  /  (
2 ^ C ) )  e.  RR* )
34 peano2re 9203 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
3528, 34syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  1 )  e.  RR )
3635, 31nndivred 10012 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR )
3736rexrd 9098 . . . . . . . . 9  |-  ( ph  ->  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  RR* )
3828lep1d 9906 . . . . . . . . . 10  |-  ( ph  ->  A  <_  ( A  +  1 ) )
3931nnred 9979 . . . . . . . . . . 11  |-  ( ph  ->  ( 2 ^ C
)  e.  RR )
4031nngt0d 10007 . . . . . . . . . . 11  |-  ( ph  ->  0  <  ( 2 ^ C ) )
41 lediv1 9839 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( A  +  1
)  e.  RR  /\  ( ( 2 ^ C )  e.  RR  /\  0  <  ( 2 ^ C ) ) )  ->  ( A  <_  ( A  +  1 )  <->  ( A  / 
( 2 ^ C
) )  <_  (
( A  +  1 )  /  ( 2 ^ C ) ) ) )
4228, 35, 39, 40, 41syl112anc 1188 . . . . . . . . . 10  |-  ( ph  ->  ( A  <_  ( A  +  1 )  <-> 
( A  /  (
2 ^ C ) )  <_  ( ( A  +  1 )  /  ( 2 ^ C ) ) ) )
4338, 42mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( A  /  (
2 ^ C ) )  <_  ( ( A  +  1 )  /  ( 2 ^ C ) ) )
44 ubicc2 10978 . . . . . . . . 9  |-  ( ( ( A  /  (
2 ^ C ) )  e.  RR*  /\  (
( A  +  1 )  /  ( 2 ^ C ) )  e.  RR*  /\  ( A  /  ( 2 ^ C ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) ) )  ->  (
( A  +  1 )  /  ( 2 ^ C ) )  e.  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  + 
1 )  /  (
2 ^ C ) ) ) )
4533, 37, 43, 44syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  +  1 )  / 
( 2 ^ C
) ) ) )
4627, 45sseldd 3317 . . . . . . 7  |-  ( ph  ->  ( ( A  + 
1 )  /  (
2 ^ C ) )  e.  ( ( B  /  ( 2 ^ C ) ) [,] ( ( B  +  1 )  / 
( 2 ^ C
) ) ) )
4710zred 10339 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
4847, 31nndivred 10012 . . . . . . . 8  |-  ( ph  ->  ( B  /  (
2 ^ C ) )  e.  RR )
49 peano2re 9203 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
5047, 49syl 16 . . . . . . . . 9  |-  ( ph  ->  ( B  +  1 )  e.  RR )
5150, 31nndivred 10012 . . . . . . . 8  |-  ( ph  ->  ( ( B  + 
1 )  /  (
2 ^ C ) )  e.  RR )
52 elicc2 10939 . . . . . . . 8  |-  ( ( ( B  /  (
2 ^ C ) )  e.  RR  /\  ( ( B  + 
1 )  /  (
2 ^ C ) )  e.  RR )  ->  ( ( ( A  +  1 )  /  ( 2 ^ C ) )  e.  ( ( B  / 
( 2 ^ C
) ) [,] (
( B  +  1 )  /  ( 2 ^ C ) ) )  <->  ( ( ( A  +  1 )  /  ( 2 ^ C ) )  e.  RR  /\  ( B  /  ( 2 ^ C ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) )  /\  ( ( A  +  1 )  /  ( 2 ^ C ) )  <_ 
( ( B  + 
1 )  /  (
2 ^ C ) ) ) ) )
5348, 51, 52syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ( A  +  1 )  / 
( 2 ^ C
) )  e.  ( ( B  /  (
2 ^ C ) ) [,] ( ( B  +  1 )  /  ( 2 ^ C ) ) )  <-> 
( ( ( A  +  1 )  / 
( 2 ^ C
) )  e.  RR  /\  ( B  /  (
2 ^ C ) )  <_  ( ( A  +  1 )  /  ( 2 ^ C ) )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( ( B  +  1 )  /  ( 2 ^ C ) ) ) ) )
5446, 53mpbid 202 . . . . . 6  |-  ( ph  ->  ( ( ( A  +  1 )  / 
( 2 ^ C
) )  e.  RR  /\  ( B  /  (
2 ^ C ) )  <_  ( ( A  +  1 )  /  ( 2 ^ C ) )  /\  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( ( B  +  1 )  /  ( 2 ^ C ) ) ) )
5554simp3d 971 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( ( B  +  1 )  /  ( 2 ^ C ) ) )
56 lediv1 9839 . . . . . 6  |-  ( ( ( A  +  1 )  e.  RR  /\  ( B  +  1
)  e.  RR  /\  ( ( 2 ^ C )  e.  RR  /\  0  <  ( 2 ^ C ) ) )  ->  ( ( A  +  1 )  <_  ( B  + 
1 )  <->  ( ( A  +  1 )  /  ( 2 ^ C ) )  <_ 
( ( B  + 
1 )  /  (
2 ^ C ) ) ) )
5735, 50, 39, 40, 56syl112anc 1188 . . . . 5  |-  ( ph  ->  ( ( A  + 
1 )  <_  ( B  +  1 )  <-> 
( ( A  + 
1 )  /  (
2 ^ C ) )  <_  ( ( B  +  1 )  /  ( 2 ^ C ) ) ) )
5855, 57mpbird 224 . . . 4  |-  ( ph  ->  ( A  +  1 )  <_  ( B  +  1 ) )
59 1re 9054 . . . . . 6  |-  1  e.  RR
6059a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
6128, 47, 60leadd1d 9584 . . . 4  |-  ( ph  ->  ( A  <_  B  <->  ( A  +  1 )  <_  ( B  + 
1 ) ) )
6258, 61mpbird 224 . . 3  |-  ( ph  ->  A  <_  B )
63 lbicc2 10977 . . . . . . . 8  |-  ( ( ( A  /  (
2 ^ C ) )  e.  RR*  /\  (
( A  +  1 )  /  ( 2 ^ C ) )  e.  RR*  /\  ( A  /  ( 2 ^ C ) )  <_ 
( ( A  + 
1 )  /  (
2 ^ C ) ) )  ->  ( A  /  ( 2 ^ C ) )  e.  ( ( A  / 
( 2 ^ C
) ) [,] (
( A  +  1 )  /  ( 2 ^ C ) ) ) )
6433, 37, 43, 63syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( A  /  (
2 ^ C ) )  e.  ( ( A  /  ( 2 ^ C ) ) [,] ( ( A  +  1 )  / 
( 2 ^ C
) ) ) )
6527, 64sseldd 3317 . . . . . 6  |-  ( ph  ->  ( A  /  (
2 ^ C ) )  e.  ( ( B  /  ( 2 ^ C ) ) [,] ( ( B  +  1 )  / 
( 2 ^ C
) ) ) )
66 elicc2 10939 . . . . . . 7  |-  ( ( ( B  /  (
2 ^ C ) )  e.  RR  /\  ( ( B  + 
1 )  /  (
2 ^ C ) )  e.  RR )  ->  ( ( A  /  ( 2 ^ C ) )  e.  ( ( B  / 
( 2 ^ C
) ) [,] (
( B  +  1 )  /  ( 2 ^ C ) ) )  <->  ( ( A  /  ( 2 ^ C ) )  e.  RR  /\  ( B  /  ( 2 ^ C ) )  <_ 
( A  /  (
2 ^ C ) )  /\  ( A  /  ( 2 ^ C ) )  <_ 
( ( B  + 
1 )  /  (
2 ^ C ) ) ) ) )
6748, 51, 66syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( A  / 
( 2 ^ C
) )  e.  ( ( B  /  (
2 ^ C ) ) [,] ( ( B  +  1 )  /  ( 2 ^ C ) ) )  <-> 
( ( A  / 
( 2 ^ C
) )  e.  RR  /\  ( B  /  (
2 ^ C ) )  <_  ( A  /  ( 2 ^ C ) )  /\  ( A  /  (
2 ^ C ) )  <_  ( ( B  +  1 )  /  ( 2 ^ C ) ) ) ) )
6865, 67mpbid 202 . . . . 5  |-  ( ph  ->  ( ( A  / 
( 2 ^ C
) )  e.  RR  /\  ( B  /  (
2 ^ C ) )  <_  ( A  /  ( 2 ^ C ) )  /\  ( A  /  (
2 ^ C ) )  <_  ( ( B  +  1 )  /  ( 2 ^ C ) ) ) )
6968simp2d 970 . . . 4  |-  ( ph  ->  ( B  /  (
2 ^ C ) )  <_  ( A  /  ( 2 ^ C ) ) )
70 lediv1 9839 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  (
( 2 ^ C
)  e.  RR  /\  0  <  ( 2 ^ C ) ) )  ->  ( B  <_  A 
<->  ( B  /  (
2 ^ C ) )  <_  ( A  /  ( 2 ^ C ) ) ) )
7147, 28, 39, 40, 70syl112anc 1188 . . . 4  |-  ( ph  ->  ( B  <_  A  <->  ( B  /  ( 2 ^ C ) )  <_  ( A  / 
( 2 ^ C
) ) ) )
7269, 71mpbird 224 . . 3  |-  ( ph  ->  B  <_  A )
7328, 47letri3d 9179 . . 3  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
7462, 72, 73mpbir2and 889 . 2  |-  ( ph  ->  A  =  B )
7519eqcomd 2417 . 2  |-  ( ph  ->  C  =  D )
7674, 75jca 519 1  |-  ( ph  ->  ( A  =  B  /\  C  =  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    C_ wss 3288   <.cop 3785   class class class wbr 4180   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957   RR*cxr 9083    < clt 9084    <_ cle 9085    / cdiv 9641   NNcn 9964   2c2 10013   NN0cn0 10185   ZZcz 10246   [,]cicc 10883   ^cexp 11345
This theorem is referenced by:  dyadmax  19451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-oi 7443  df-card 7790  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ico 10886  df-icc 10887  df-fz 11008  df-fzo 11099  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-sum 12443  df-rest 13613  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-top 16926  df-bases 16928  df-topon 16929  df-cmp 17412  df-ovol 19322
  Copyright terms: Public domain W3C validator