Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e01an Structured version   Unicode version

Theorem e01an 28867
Description: Conjunction form of e01 28866. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e01an.1  |-  ph
e01an.2  |-  (. ps  ->.  ch
).
e01an.3  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
e01an  |-  (. ps  ->.  th
).

Proof of Theorem e01an
StepHypRef Expression
1 e01an.1 . 2  |-  ph
2 e01an.2 . 2  |-  (. ps  ->.  ch
).
3 e01an.3 . . 3  |-  ( (
ph  /\  ch )  ->  th )
43ex 425 . 2  |-  ( ph  ->  ( ch  ->  th )
)
51, 2, 4e01 28866 1  |-  (. ps  ->.  th
).
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   (.wvd1 28734
This theorem is referenced by:  unipwrVD  29018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-vd1 28735
  Copyright terms: Public domain W3C validator