Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e02an Unicode version

Theorem e02an 28776
Description: Conjunction form of e02 28775. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e02an.1  |-  ph
e02an.2  |-  (. ps ,. ch  ->.  th ).
e02an.3  |-  ( (
ph  /\  th )  ->  ta )
Assertion
Ref Expression
e02an  |-  (. ps ,. ch  ->.  ta ).

Proof of Theorem e02an
StepHypRef Expression
1 e02an.1 . 2  |-  ph
2 e02an.2 . 2  |-  (. ps ,. ch  ->.  th ).
3 e02an.3 . . 3  |-  ( (
ph  /\  th )  ->  ta )
43ex 423 . 2  |-  ( ph  ->  ( th  ->  ta ) )
51, 2, 4e02 28775 1  |-  (. ps ,. ch  ->.  ta ).
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   (.wvd2 28645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-vd2 28646
  Copyright terms: Public domain W3C validator