Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e1bi Unicode version

Theorem e1bi 28706
Description: Biconditional form of e1_ 28704. sylib 188 is e1bi 28706 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e1bi.1  |-  (. ph  ->.  ps
).
e1bi.2  |-  ( ps  <->  ch )
Assertion
Ref Expression
e1bi  |-  (. ph  ->.  ch
).

Proof of Theorem e1bi
StepHypRef Expression
1 e1bi.1 . 2  |-  (. ph  ->.  ps
).
2 e1bi.2 . . 3  |-  ( ps  <->  ch )
32biimpi 186 . 2  |-  ( ps 
->  ch )
41, 3e1_ 28704 1  |-  (. ph  ->.  ch
).
Colors of variables: wff set class
Syntax hints:    <-> wb 176   (.wvd1 28636
This theorem is referenced by:  zfregs2VD  28933  tpid3gVD  28934  en3lplem2VD  28936  ordelordALTVD  28959
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-vd1 28637
  Copyright terms: Public domain W3C validator