Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e23an Unicode version

Theorem e23an 28531
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e23an.1  |-  (. ph ,. ps  ->.  ch ).
e23an.2  |-  (. ph ,. ps ,. th  ->.  ta ).
e23an.3  |-  ( ( ch  /\  ta )  ->  et )
Assertion
Ref Expression
e23an  |-  (. ph ,. ps ,. th  ->.  et ).

Proof of Theorem e23an
StepHypRef Expression
1 e23an.1 . 2  |-  (. ph ,. ps  ->.  ch ).
2 e23an.2 . 2  |-  (. ph ,. ps ,. th  ->.  ta ).
3 e23an.3 . . 3  |-  ( ( ch  /\  ta )  ->  et )
43ex 423 . 2  |-  ( ch 
->  ( ta  ->  et ) )
51, 2, 4e23 28530 1  |-  (. ph ,. ps ,. th  ->.  et ).
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   (.wvd2 28346   (.wvd3 28356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-vd2 28347  df-vd3 28359
  Copyright terms: Public domain W3C validator