Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2bi Structured version   Unicode version

Theorem e2bi 28734
Description: Bi-conditional form of e2 28733. syl6ib 219 is e2bi 28734 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e2bi.1  |-  (. ph ,. ps  ->.  ch ).
e2bi.2  |-  ( ch  <->  th )
Assertion
Ref Expression
e2bi  |-  (. ph ,. ps  ->.  th ).

Proof of Theorem e2bi
StepHypRef Expression
1 e2bi.1 . 2  |-  (. ph ,. ps  ->.  ch ).
2 e2bi.2 . . 3  |-  ( ch  <->  th )
32biimpi 188 . 2  |-  ( ch 
->  th )
41, 3e2 28733 1  |-  (. ph ,. ps  ->.  th ).
Colors of variables: wff set class
Syntax hints:    <-> wb 178   (.wvd2 28670
This theorem is referenced by:  snssiALTVD  28940  eqsbc3rVD  28953  en3lplem2VD  28957  onfrALTlem3VD  29000  onfrALTlem1VD  29003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-vd2 28671
  Copyright terms: Public domain W3C validator