Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e33an Unicode version

Theorem e33an 28824
Description: Conjunction form of e33 28823. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e33an.1  |-  (. ph ,. ps ,. ch  ->.  th ).
e33an.2  |-  (. ph ,. ps ,. ch  ->.  ta ).
e33an.3  |-  ( ( th  /\  ta )  ->  et )
Assertion
Ref Expression
e33an  |-  (. ph ,. ps ,. ch  ->.  et ).

Proof of Theorem e33an
StepHypRef Expression
1 e33an.1 . 2  |-  (. ph ,. ps ,. ch  ->.  th ).
2 e33an.2 . 2  |-  (. ph ,. ps ,. ch  ->.  ta ).
3 e33an.3 . . 3  |-  ( ( th  /\  ta )  ->  et )
43ex 423 . 2  |-  ( th 
->  ( ta  ->  et ) )
51, 2, 4e33 28823 1  |-  (. ph ,. ps ,. ch  ->.  et ).
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   (.wvd3 28655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-vd3 28658
  Copyright terms: Public domain W3C validator