MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsdm Unicode version

Theorem ecelqsdm 6871
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
Assertion
Ref Expression
ecelqsdm  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  A )

Proof of Theorem ecelqsdm
StepHypRef Expression
1 elqsn0 6870 . . 3  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  [ B ] R  =/=  (/) )
2 ecdmn0 6844 . . 3  |-  ( B  e.  dom  R  <->  [ B ] R  =/=  (/) )
31, 2sylibr 203 . 2  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  dom  R )
4 simpl 443 . 2  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  dom  R  =  A )
53, 4eleqtrd 2442 1  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715    =/= wne 2529   (/)c0 3543   dom cdm 4792   [cec 6800   /.cqs 6801
This theorem is referenced by:  brecop2  6895  th3qlem1  6907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-br 4126  df-opab 4180  df-xp 4798  df-cnv 4800  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-ec 6804  df-qs 6808
  Copyright terms: Public domain W3C validator