MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopover Unicode version

Theorem ecopover 6975
Description: Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
ecopopr.com  |-  ( x 
.+  y )  =  ( y  .+  x
)
ecopopr.cl  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
ecopopr.ass  |-  ( ( x  .+  y ) 
.+  z )  =  ( x  .+  (
y  .+  z )
)
ecopopr.can  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
Assertion
Ref Expression
ecopover  |-  .~  Er  ( S  X.  S
)
Distinct variable groups:    x, y,
z, w, v, u, 
.+    x, S, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y, z, w, v, u)

Proof of Theorem ecopover
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
21relopabi 4967 . . . 4  |-  Rel  .~
32a1i 11 . . 3  |-  (  T. 
->  Rel  .~  )
4 ecopopr.com . . . . 5  |-  ( x 
.+  y )  =  ( y  .+  x
)
51, 4ecopovsym 6973 . . . 4  |-  ( f  .~  g  ->  g  .~  f )
65adantl 453 . . 3  |-  ( (  T.  /\  f  .~  g )  ->  g  .~  f )
7 ecopopr.cl . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
8 ecopopr.ass . . . . 5  |-  ( ( x  .+  y ) 
.+  z )  =  ( x  .+  (
y  .+  z )
)
9 ecopopr.can . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
101, 4, 7, 8, 9ecopovtrn 6974 . . . 4  |-  ( ( f  .~  g  /\  g  .~  h )  -> 
f  .~  h )
1110adantl 453 . . 3  |-  ( (  T.  /\  ( f  .~  g  /\  g  .~  h ) )  -> 
f  .~  h )
12 vex 2927 . . . . . . . . . . 11  |-  g  e. 
_V
13 vex 2927 . . . . . . . . . . 11  |-  h  e. 
_V
1412, 13, 4caovcom 6211 . . . . . . . . . 10  |-  ( g 
.+  h )  =  ( h  .+  g
)
151ecopoveq 6972 . . . . . . . . . 10  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( <. g ,  h >.  .~  <. g ,  h >.  <-> 
( g  .+  h
)  =  ( h 
.+  g ) ) )
1614, 15mpbiri 225 . . . . . . . . 9  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  <. g ,  h >.  .~ 
<. g ,  h >. )
1716anidms 627 . . . . . . . 8  |-  ( ( g  e.  S  /\  h  e.  S )  -> 
<. g ,  h >.  .~ 
<. g ,  h >. )
1817rgen2a 2740 . . . . . . 7  |-  A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~  <. g ,  h >.
19 breq12 4185 . . . . . . . . 9  |-  ( ( f  =  <. g ,  h >.  /\  f  =  <. g ,  h >. )  ->  ( f  .~  f  <->  <. g ,  h >.  .~  <. g ,  h >. ) )
2019anidms 627 . . . . . . . 8  |-  ( f  =  <. g ,  h >.  ->  ( f  .~  f 
<-> 
<. g ,  h >.  .~ 
<. g ,  h >. ) )
2120ralxp 4983 . . . . . . 7  |-  ( A. f  e.  ( S  X.  S ) f  .~  f 
<-> 
A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~ 
<. g ,  h >. )
2218, 21mpbir 201 . . . . . 6  |-  A. f  e.  ( S  X.  S
) f  .~  f
2322rspec 2738 . . . . 5  |-  ( f  e.  ( S  X.  S )  ->  f  .~  f )
2423a1i 11 . . . 4  |-  (  T. 
->  ( f  e.  ( S  X.  S )  ->  f  .~  f
) )
25 opabssxp 4917 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .+  u
)  =  ( w 
.+  v ) ) ) }  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
261, 25eqsstri 3346 . . . . . 6  |-  .~  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
2726ssbri 4222 . . . . 5  |-  ( f  .~  f  ->  f
( ( S  X.  S )  X.  ( S  X.  S ) ) f )
28 brxp 4876 . . . . . 6  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  <->  ( f  e.  ( S  X.  S
)  /\  f  e.  ( S  X.  S
) ) )
2928simplbi 447 . . . . 5  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  ->  f  e.  ( S  X.  S
) )
3027, 29syl 16 . . . 4  |-  ( f  .~  f  ->  f  e.  ( S  X.  S
) )
3124, 30impbid1 195 . . 3  |-  (  T. 
->  ( f  e.  ( S  X.  S )  <-> 
f  .~  f )
)
323, 6, 11, 31iserd 6898 . 2  |-  (  T. 
->  .~  Er  ( S  X.  S ) )
3332trud 1329 1  |-  .~  Er  ( S  X.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    T. wtru 1322   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2674   <.cop 3785   class class class wbr 4180   {copab 4233    X. cxp 4843   Rel wrel 4850  (class class class)co 6048    Er wer 6869
This theorem is referenced by:  enqer  8762  enrer  8907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fv 5429  df-ov 6051  df-er 6872
  Copyright terms: Public domain W3C validator