MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopover Unicode version

Theorem ecopover 6762
Description: Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
ecopopr.com  |-  ( x 
.+  y )  =  ( y  .+  x
)
ecopopr.cl  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
ecopopr.ass  |-  ( ( x  .+  y ) 
.+  z )  =  ( x  .+  (
y  .+  z )
)
ecopopr.can  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
Assertion
Ref Expression
ecopover  |-  .~  Er  ( S  X.  S
)
Distinct variable groups:    x, y,
z, w, v, u, 
.+    x, S, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y, z, w, v, u)

Proof of Theorem ecopover
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
21relopabi 4811 . . . 4  |-  Rel  .~
32a1i 10 . . 3  |-  (  T. 
->  Rel  .~  )
4 ecopopr.com . . . . 5  |-  ( x 
.+  y )  =  ( y  .+  x
)
51, 4ecopovsym 6760 . . . 4  |-  ( f  .~  g  ->  g  .~  f )
65adantl 452 . . 3  |-  ( (  T.  /\  f  .~  g )  ->  g  .~  f )
7 ecopopr.cl . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
8 ecopopr.ass . . . . 5  |-  ( ( x  .+  y ) 
.+  z )  =  ( x  .+  (
y  .+  z )
)
9 ecopopr.can . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
101, 4, 7, 8, 9ecopovtrn 6761 . . . 4  |-  ( ( f  .~  g  /\  g  .~  h )  -> 
f  .~  h )
1110adantl 452 . . 3  |-  ( (  T.  /\  ( f  .~  g  /\  g  .~  h ) )  -> 
f  .~  h )
12 vex 2791 . . . . . . . . . . 11  |-  g  e. 
_V
13 vex 2791 . . . . . . . . . . 11  |-  h  e. 
_V
1412, 13, 4caovcom 6017 . . . . . . . . . 10  |-  ( g 
.+  h )  =  ( h  .+  g
)
151ecopoveq 6759 . . . . . . . . . 10  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( <. g ,  h >.  .~  <. g ,  h >.  <-> 
( g  .+  h
)  =  ( h 
.+  g ) ) )
1614, 15mpbiri 224 . . . . . . . . 9  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  <. g ,  h >.  .~ 
<. g ,  h >. )
1716anidms 626 . . . . . . . 8  |-  ( ( g  e.  S  /\  h  e.  S )  -> 
<. g ,  h >.  .~ 
<. g ,  h >. )
1817rgen2a 2609 . . . . . . 7  |-  A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~  <. g ,  h >.
19 breq12 4028 . . . . . . . . 9  |-  ( ( f  =  <. g ,  h >.  /\  f  =  <. g ,  h >. )  ->  ( f  .~  f  <->  <. g ,  h >.  .~  <. g ,  h >. ) )
2019anidms 626 . . . . . . . 8  |-  ( f  =  <. g ,  h >.  ->  ( f  .~  f 
<-> 
<. g ,  h >.  .~ 
<. g ,  h >. ) )
2120ralxp 4827 . . . . . . 7  |-  ( A. f  e.  ( S  X.  S ) f  .~  f 
<-> 
A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~ 
<. g ,  h >. )
2218, 21mpbir 200 . . . . . 6  |-  A. f  e.  ( S  X.  S
) f  .~  f
2322rspec 2607 . . . . 5  |-  ( f  e.  ( S  X.  S )  ->  f  .~  f )
2423a1i 10 . . . 4  |-  (  T. 
->  ( f  e.  ( S  X.  S )  ->  f  .~  f
) )
25 opabssxp 4762 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .+  u
)  =  ( w 
.+  v ) ) ) }  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
261, 25eqsstri 3208 . . . . . 6  |-  .~  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
2726ssbri 4065 . . . . 5  |-  ( f  .~  f  ->  f
( ( S  X.  S )  X.  ( S  X.  S ) ) f )
28 brxp 4720 . . . . . 6  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  <->  ( f  e.  ( S  X.  S
)  /\  f  e.  ( S  X.  S
) ) )
2928simplbi 446 . . . . 5  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  ->  f  e.  ( S  X.  S
) )
3027, 29syl 15 . . . 4  |-  ( f  .~  f  ->  f  e.  ( S  X.  S
) )
3124, 30impbid1 194 . . 3  |-  (  T. 
->  ( f  e.  ( S  X.  S )  <-> 
f  .~  f )
)
323, 6, 11, 31iserd 6686 . 2  |-  (  T. 
->  .~  Er  ( S  X.  S ) )
3332trud 1314 1  |-  .~  Er  ( S  X.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    T. wtru 1307   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643   class class class wbr 4023   {copab 4076    X. cxp 4687   Rel wrel 4694  (class class class)co 5858    Er wer 6657
This theorem is referenced by:  enqer  8545  enrer  8690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fv 5263  df-ov 5861  df-er 6660
  Copyright terms: Public domain W3C validator