MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopovsym Unicode version

Theorem ecopovsym 6776
Description: Assuming the operation  F is commutative, show that the relation  .~, specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
ecopopr.com  |-  ( x 
.+  y )  =  ( y  .+  x
)
Assertion
Ref Expression
ecopovsym  |-  ( A  .~  B  ->  B  .~  A )
Distinct variable groups:    x, y,
z, w, v, u, 
.+    x, S, y, z, w, v, u
Allowed substitution hints:    A( x, y, z, w, v, u)    B( x, y, z, w, v, u)    .~ ( x, y, z, w, v, u)

Proof of Theorem ecopovsym
Dummy variables  f 
g  h  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
2 opabssxp 4778 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .+  u
)  =  ( w 
.+  v ) ) ) }  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
31, 2eqsstri 3221 . . . 4  |-  .~  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
43brel 4753 . . 3  |-  ( A  .~  B  ->  ( A  e.  ( S  X.  S )  /\  B  e.  ( S  X.  S
) ) )
5 eqid 2296 . . . 4  |-  ( S  X.  S )  =  ( S  X.  S
)
6 breq1 4042 . . . . 5  |-  ( <.
f ,  g >.  =  A  ->  ( <.
f ,  g >.  .~  <. h ,  t
>. 
<->  A  .~  <. h ,  t >. )
)
7 breq2 4043 . . . . 5  |-  ( <.
f ,  g >.  =  A  ->  ( <.
h ,  t >.  .~  <. f ,  g
>. 
<-> 
<. h ,  t >.  .~  A ) )
86, 7bibi12d 312 . . . 4  |-  ( <.
f ,  g >.  =  A  ->  ( (
<. f ,  g >.  .~  <. h ,  t
>. 
<-> 
<. h ,  t >.  .~  <. f ,  g
>. )  <->  ( A  .~  <.
h ,  t >.  <->  <.
h ,  t >.  .~  A ) ) )
9 breq2 4043 . . . . 5  |-  ( <.
h ,  t >.  =  B  ->  ( A  .~  <. h ,  t
>. 
<->  A  .~  B ) )
10 breq1 4042 . . . . 5  |-  ( <.
h ,  t >.  =  B  ->  ( <.
h ,  t >.  .~  A  <->  B  .~  A ) )
119, 10bibi12d 312 . . . 4  |-  ( <.
h ,  t >.  =  B  ->  ( ( A  .~  <. h ,  t >.  <->  <. h ,  t >.  .~  A )  <-> 
( A  .~  B  <->  B  .~  A ) ) )
121ecopoveq 6775 . . . . . 6  |-  ( ( ( f  e.  S  /\  g  e.  S
)  /\  ( h  e.  S  /\  t  e.  S ) )  -> 
( <. f ,  g
>.  .~  <. h ,  t
>. 
<->  ( f  .+  t
)  =  ( g 
.+  h ) ) )
13 vex 2804 . . . . . . . . 9  |-  f  e. 
_V
14 vex 2804 . . . . . . . . 9  |-  t  e. 
_V
15 ecopopr.com . . . . . . . . 9  |-  ( x 
.+  y )  =  ( y  .+  x
)
1613, 14, 15caovcom 6033 . . . . . . . 8  |-  ( f 
.+  t )  =  ( t  .+  f
)
17 vex 2804 . . . . . . . . 9  |-  g  e. 
_V
18 vex 2804 . . . . . . . . 9  |-  h  e. 
_V
1917, 18, 15caovcom 6033 . . . . . . . 8  |-  ( g 
.+  h )  =  ( h  .+  g
)
2016, 19eqeq12i 2309 . . . . . . 7  |-  ( ( f  .+  t )  =  ( g  .+  h )  <->  ( t  .+  f )  =  ( h  .+  g ) )
21 eqcom 2298 . . . . . . 7  |-  ( ( t  .+  f )  =  ( h  .+  g )  <->  ( h  .+  g )  =  ( t  .+  f ) )
2220, 21bitri 240 . . . . . 6  |-  ( ( f  .+  t )  =  ( g  .+  h )  <->  ( h  .+  g )  =  ( t  .+  f ) )
2312, 22syl6bb 252 . . . . 5  |-  ( ( ( f  e.  S  /\  g  e.  S
)  /\  ( h  e.  S  /\  t  e.  S ) )  -> 
( <. f ,  g
>.  .~  <. h ,  t
>. 
<->  ( h  .+  g
)  =  ( t 
.+  f ) ) )
241ecopoveq 6775 . . . . . 6  |-  ( ( ( h  e.  S  /\  t  e.  S
)  /\  ( f  e.  S  /\  g  e.  S ) )  -> 
( <. h ,  t
>.  .~  <. f ,  g
>. 
<->  ( h  .+  g
)  =  ( t 
.+  f ) ) )
2524ancoms 439 . . . . 5  |-  ( ( ( f  e.  S  /\  g  e.  S
)  /\  ( h  e.  S  /\  t  e.  S ) )  -> 
( <. h ,  t
>.  .~  <. f ,  g
>. 
<->  ( h  .+  g
)  =  ( t 
.+  f ) ) )
2623, 25bitr4d 247 . . . 4  |-  ( ( ( f  e.  S  /\  g  e.  S
)  /\  ( h  e.  S  /\  t  e.  S ) )  -> 
( <. f ,  g
>.  .~  <. h ,  t
>. 
<-> 
<. h ,  t >.  .~  <. f ,  g
>. ) )
275, 8, 11, 262optocl 4781 . . 3  |-  ( ( A  e.  ( S  X.  S )  /\  B  e.  ( S  X.  S ) )  -> 
( A  .~  B  <->  B  .~  A ) )
284, 27syl 15 . 2  |-  ( A  .~  B  ->  ( A  .~  B  <->  B  .~  A ) )
2928ibi 232 1  |-  ( A  .~  B  ->  B  .~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   <.cop 3656   class class class wbr 4039   {copab 4092    X. cxp 4703  (class class class)co 5874
This theorem is referenced by:  ecopover  6778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator