MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqs Unicode version

Theorem ecqs 6723
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
Hypothesis
Ref Expression
ecqs.1  |-  R  e. 
_V
Assertion
Ref Expression
ecqs  |-  [ A ] R  =  U. ( { A } /. R )

Proof of Theorem ecqs
StepHypRef Expression
1 df-ec 6662 . 2  |-  [ A ] R  =  ( R " { A }
)
2 ecqs.1 . . 3  |-  R  e. 
_V
3 uniqs 6719 . . 3  |-  ( R  e.  _V  ->  U. ( { A } /. R
)  =  ( R
" { A }
) )
42, 3ax-mp 8 . 2  |-  U. ( { A } /. R
)  =  ( R
" { A }
)
51, 4eqtr4i 2306 1  |-  [ A ] R  =  U. ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   U.cuni 3827   "cima 4692   [cec 6658   /.cqs 6659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-ec 6662  df-qs 6666
  Copyright terms: Public domain W3C validator