MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqs Unicode version

Theorem ecqs 6739
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
Hypothesis
Ref Expression
ecqs.1  |-  R  e. 
_V
Assertion
Ref Expression
ecqs  |-  [ A ] R  =  U. ( { A } /. R )

Proof of Theorem ecqs
StepHypRef Expression
1 df-ec 6678 . 2  |-  [ A ] R  =  ( R " { A }
)
2 ecqs.1 . . 3  |-  R  e. 
_V
3 uniqs 6735 . . 3  |-  ( R  e.  _V  ->  U. ( { A } /. R
)  =  ( R
" { A }
) )
42, 3ax-mp 8 . 2  |-  U. ( { A } /. R
)  =  ( R
" { A }
)
51, 4eqtr4i 2319 1  |-  [ A ] R  =  U. ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653   U.cuni 3843   "cima 4708   [cec 6674   /.cqs 6675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-ec 6678  df-qs 6682
  Copyright terms: Public domain W3C validator