MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ee02 Unicode version

Theorem ee02 1367
Description: e02 28775 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Hypotheses
Ref Expression
ee02.1  |-  ph
ee02.2  |-  ( ps 
->  ( ch  ->  th )
)
ee02.3  |-  ( ph  ->  ( th  ->  ta ) )
Assertion
Ref Expression
ee02  |-  ( ps 
->  ( ch  ->  ta ) )

Proof of Theorem ee02
StepHypRef Expression
1 ee02.1 . . 3  |-  ph
21a1i 10 . 2  |-  ( ps 
->  ph )
3 ee02.2 . 2  |-  ( ps 
->  ( ch  ->  th )
)
4 ee02.3 . 2  |-  ( ph  ->  ( th  ->  ta ) )
52, 3, 4sylsyld 52 1  |-  ( ps 
->  ( ch  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  r1sdom  7462  alephordi  7717  vk15.4j  28590  onfrALTlem3  28608  ee02an  28777
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator