Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee13an Structured version   Unicode version

Theorem ee13an 28936
Description: e13an 28935 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee13an.1  |-  ( ph  ->  ps )
ee13an.2  |-  ( ph  ->  ( ch  ->  ( th  ->  ta ) ) )
ee13an.3  |-  ( ( ps  /\  ta )  ->  et )
Assertion
Ref Expression
ee13an  |-  ( ph  ->  ( ch  ->  ( th  ->  et ) ) )

Proof of Theorem ee13an
StepHypRef Expression
1 ee13an.1 . 2  |-  ( ph  ->  ps )
2 ee13an.2 . 2  |-  ( ph  ->  ( ch  ->  ( th  ->  ta ) ) )
3 ee13an.3 . . 3  |-  ( ( ps  /\  ta )  ->  et )
43ex 425 . 2  |-  ( ps 
->  ( ta  ->  et ) )
51, 2, 4ee13 28660 1  |-  ( ph  ->  ( ch  ->  ( th  ->  et ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator