Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee201 Structured version   Unicode version

Theorem ee201 28700
Description: e201 28699 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee201.1  |-  ( ph  ->  ( ps  ->  ch ) )
ee201.2  |-  th
ee201.3  |-  ( ph  ->  ta )
ee201.4  |-  ( ch 
->  ( th  ->  ( ta  ->  et ) ) )
Assertion
Ref Expression
ee201  |-  ( ph  ->  ( ps  ->  et ) )

Proof of Theorem ee201
StepHypRef Expression
1 ee201.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 ee201.2 . . . 4  |-  th
32a1i 11 . . 3  |-  ( ps 
->  th )
43a1i 11 . 2  |-  ( ph  ->  ( ps  ->  th )
)
5 ee201.3 . . 3  |-  ( ph  ->  ta )
65a1d 23 . 2  |-  ( ph  ->  ( ps  ->  ta ) )
7 ee201.4 . 2  |-  ( ch 
->  ( th  ->  ( ta  ->  et ) ) )
81, 4, 6, 7ee222 28521 1  |-  ( ph  ->  ( ps  ->  et ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator