MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ee21 Structured version   Unicode version

Theorem ee21 1385
Description: e21 28904 without virtual deductions. (Contributed by Alan Sare, 18-Mar-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Hypotheses
Ref Expression
ee21.1  |-  ( ph  ->  ( ps  ->  ch ) )
ee21.2  |-  ( ph  ->  th )
ee21.3  |-  ( ch 
->  ( th  ->  ta ) )
Assertion
Ref Expression
ee21  |-  ( ph  ->  ( ps  ->  ta ) )

Proof of Theorem ee21
StepHypRef Expression
1 ee21.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 ee21.2 . . 3  |-  ( ph  ->  th )
32a1d 24 . 2  |-  ( ph  ->  ( ps  ->  th )
)
4 ee21.3 . 2  |-  ( ch 
->  ( th  ->  ta ) )
51, 3, 4ee22 1372 1  |-  ( ph  ->  ( ps  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  omeulem2  6828  btwnconn1lem12  26034  sbcim2g  28685  ee21an  28906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 8
  Copyright terms: Public domain W3C validator