Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee233 Structured version   Unicode version

Theorem ee233 28529
Description: Non-virtual deduction form of e233 28804. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1::  |-  ( ph  ->  ( ps  ->  ch ) )
h2::  |-  ( ph  ->  ( ps  ->  ( th  ->  ta ) ) )
h3::  |-  ( ph  ->  ( ps  ->  ( th  ->  et ) ) )
h4::  |-  ( ch  ->  ( ta  ->  ( et  ->  ze ) ) )
5:1,4:  |-  ( ph  ->  ( ps  ->  ( ta  ->  ( et  ->  ze ) ) )  )
6:5:  |-  ( ta  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) )  )
7:2,6:  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) ) ) )
8:7:  |-  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) ) )
9:8:  |-  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) )  )
10:9:  |-  ( ph  ->  ( ps  ->  ( th  ->  ( et  ->  ze ) ) )  )
11:10:  |-  ( et  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) )  )
12:3,11:  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) ) ) )
13:12:  |-  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) ) )
14:13:  |-  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) )  )
qed:14:  |-  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) )
Hypotheses
Ref Expression
ee233.1  |-  ( ph  ->  ( ps  ->  ch ) )
ee233.2  |-  ( ph  ->  ( ps  ->  ( th  ->  ta ) ) )
ee233.3  |-  ( ph  ->  ( ps  ->  ( th  ->  et ) ) )
ee233.4  |-  ( ch 
->  ( ta  ->  ( et  ->  ze ) ) )
Assertion
Ref Expression
ee233  |-  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) )

Proof of Theorem ee233
StepHypRef Expression
1 ee233.3 . . . . 5  |-  ( ph  ->  ( ps  ->  ( th  ->  et ) ) )
2 ee233.2 . . . . . . . . 9  |-  ( ph  ->  ( ps  ->  ( th  ->  ta ) ) )
3 ee233.1 . . . . . . . . . . 11  |-  ( ph  ->  ( ps  ->  ch ) )
4 ee233.4 . . . . . . . . . . 11  |-  ( ch 
->  ( ta  ->  ( et  ->  ze ) ) )
53, 4syl6 31 . . . . . . . . . 10  |-  ( ph  ->  ( ps  ->  ( ta  ->  ( et  ->  ze ) ) ) )
65com3r 75 . . . . . . . . 9  |-  ( ta 
->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) )
72, 6syl8 67 . . . . . . . 8  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) ) ) )
8 pm2.43cbi 28528 . . . . . . . 8  |-  ( (
ph  ->  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) ) ) )  <-> 
( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) ) ) )
97, 8mpbi 200 . . . . . . 7  |-  ( ps 
->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze )
) ) ) )
10 pm2.43cbi 28528 . . . . . . 7  |-  ( ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) ) )  <->  ( th  ->  (
ph  ->  ( ps  ->  ( et  ->  ze )
) ) ) )
119, 10mpbi 200 . . . . . 6  |-  ( th 
->  ( ph  ->  ( ps  ->  ( et  ->  ze ) ) ) )
1211com14 84 . . . . 5  |-  ( et 
->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) )
131, 12syl8 67 . . . 4  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) ) ) )
14 pm2.43cbi 28528 . . . 4  |-  ( (
ph  ->  ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) ) ) )  <-> 
( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) ) ) )
1513, 14mpbi 200 . . 3  |-  ( ps 
->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze )
) ) ) )
16 pm2.43cbi 28528 . . 3  |-  ( ( ps  ->  ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) ) )  <->  ( th  ->  (
ph  ->  ( ps  ->  ( th  ->  ze )
) ) ) )
1715, 16mpbi 200 . 2  |-  ( th 
->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) )
18 pm2.43cbi 28528 . 2  |-  ( ( th  ->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) )  <->  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) ) )
1917, 18mpbi 200 1  |-  ( ph  ->  ( ps  ->  ( th  ->  ze ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem is referenced by:  truniALT  28553  onfrALTlem2  28559  e233  28804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178
  Copyright terms: Public domain W3C validator