MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eean Unicode version

Theorem eean 1884
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypotheses
Ref Expression
eean.1  |-  F/ y
ph
eean.2  |-  F/ x ps
Assertion
Ref Expression
eean  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )

Proof of Theorem eean
StepHypRef Expression
1 eean.1 . . . 4  |-  F/ y
ph
2119.42 1847 . . 3  |-  ( E. y ( ph  /\  ps )  <->  ( ph  /\  E. y ps ) )
32exbii 1573 . 2  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( ph  /\  E. y ps ) )
4 eean.2 . . . 4  |-  F/ x ps
54nfex 1795 . . 3  |-  F/ x E. y ps
6519.41 1846 . 2  |-  ( E. x ( ph  /\  E. y ps )  <->  ( E. x ph  /\  E. y ps ) )
73, 6bitri 240 1  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1532   F/wnf 1535
This theorem is referenced by:  eeanv  1885  reean  2740  fnchoice  26848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1533  df-nf 1536
  Copyright terms: Public domain W3C validator