MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eeeanv Unicode version

Theorem eeeanv 1927
Description: Rearrange existential quantifiers. Revised to loosen distinct variable restrictions. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Revised by Wolf Lammen, 20-Jan-2018.)
Assertion
Ref Expression
eeeanv  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
Distinct variable groups:    ph, y    ph, z    ps, x    ps, z    ch, x    ch, y
Allowed substitution hints:    ph( x)    ps( y)    ch( z)

Proof of Theorem eeeanv
StepHypRef Expression
1 eeanv 1926 . . 3  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x ph  /\  E. y ps ) )
21anbi1i 677 . 2  |-  ( ( E. x E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( ( E. x ph  /\ 
E. y ps )  /\  E. z ch )
)
3 df-3an 938 . . . . . 6  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
43exbii 1589 . . . . 5  |-  ( E. z ( ph  /\  ps  /\  ch )  <->  E. z
( ( ph  /\  ps )  /\  ch )
)
5 19.42v 1917 . . . . 5  |-  ( E. z ( ( ph  /\ 
ps )  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  E. z ch ) )
64, 5bitri 241 . . . 4  |-  ( E. z ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  E. z ch ) )
762exbii 1590 . . 3  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  E. x E. y ( ( ph  /\ 
ps )  /\  E. z ch ) )
8 nfv 1626 . . . . . 6  |-  F/ y ch
98nfex 1855 . . . . 5  |-  F/ y E. z ch
10919.41 1889 . . . 4  |-  ( E. y ( ( ph  /\ 
ps )  /\  E. z ch )  <->  ( E. y ( ph  /\  ps )  /\  E. z ch ) )
1110exbii 1589 . . 3  |-  ( E. x E. y ( ( ph  /\  ps )  /\  E. z ch )  <->  E. x ( E. y ( ph  /\  ps )  /\  E. z ch ) )
12 nfv 1626 . . . . 5  |-  F/ x ch
1312nfex 1855 . . . 4  |-  F/ x E. z ch
141319.41 1889 . . 3  |-  ( E. x ( E. y
( ph  /\  ps )  /\  E. z ch )  <->  ( E. x E. y
( ph  /\  ps )  /\  E. z ch )
)
157, 11, 143bitri 263 . 2  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x E. y ( ph  /\ 
ps )  /\  E. z ch ) )
16 df-3an 938 . 2  |-  ( ( E. x ph  /\  E. y ps  /\  E. z ch )  <->  ( ( E. x ph  /\  E. y ps )  /\  E. z ch ) )
172, 15, 163bitr4i 269 1  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  ( E. x ph  /\  E. y ps  /\  E. z ch ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547
This theorem is referenced by:  vtocl3  2951  spc3egv  2983  eloprabga  6099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-ex 1548  df-nf 1551
  Copyright terms: Public domain W3C validator