Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel2131 Structured version   Unicode version

Theorem eel2131 28896
Description: syl2an 465 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.)
Hypotheses
Ref Expression
eel2131.1  |-  ( (
ph  /\  ps )  ->  ch )
eel2131.2  |-  ( (
ph  /\  th )  ->  ta )
eel2131.3  |-  ( ( ch  /\  ta )  ->  et )
Assertion
Ref Expression
eel2131  |-  ( (
ph  /\  ps  /\  th )  ->  et )

Proof of Theorem eel2131
StepHypRef Expression
1 eel2131.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
2 eel2131.2 . . 3  |-  ( (
ph  /\  th )  ->  ta )
3 eel2131.3 . . 3  |-  ( ( ch  /\  ta )  ->  et )
41, 2, 3syl2an 465 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  th ) )  ->  et )
543impdi 1240 1  |-  ( (
ph  /\  ps  /\  th )  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator