Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eel221 Unicode version

Theorem eel221 28802
Description: syl2an 463 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
Hypotheses
Ref Expression
eel221.1  |-  ( ph  ->  ps )
eel221.2  |-  ( ( ch  /\  ph )  ->  th )
eel221.3  |-  ( ( ps  /\  th )  ->  ta )
Assertion
Ref Expression
eel221  |-  ( ( ch  /\  ph )  ->  ta )

Proof of Theorem eel221
StepHypRef Expression
1 eel221.1 . . 3  |-  ( ph  ->  ps )
2 eel221.2 . . 3  |-  ( ( ch  /\  ph )  ->  th )
3 eel221.3 . . 3  |-  ( ( ps  /\  th )  ->  ta )
41, 2, 3syl2an 463 . 2  |-  ( (
ph  /\  ( ch  /\ 
ph ) )  ->  ta )
54anabss7 794 1  |-  ( ( ch  /\  ph )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator