MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcj Unicode version

Theorem efcj 12389
Description: Exponential function of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )

Proof of Theorem efcj
Dummy variables  j 
k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cjcl 11606 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
2 eqid 2296 . . . 4  |-  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) )
32efcvg 12382 . . 3  |-  ( ( * `  A )  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
41, 3syl 15 . 2  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  ( * `  A
) ) )
5 nn0uz 10278 . . 3  |-  NN0  =  ( ZZ>= `  0 )
6 eqid 2296 . . . 4  |-  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) )
76efcvg 12382 . . 3  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) )  ~~>  ( exp `  A ) )
8 seqex 11064 . . . 4  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  e.  _V
98a1i 10 . . 3  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  e. 
_V )
10 0z 10051 . . . 4  |-  0  e.  ZZ
1110a1i 10 . . 3  |-  ( A  e.  CC  ->  0  e.  ZZ )
126eftval 12374 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
1312adantl 452 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
14 eftcl 12371 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2370 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
165, 11, 15serf 11090 . . . 4  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) : NN0 --> CC )
17 ffvelrn 5679 . . . 4  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) : NN0 --> CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j )  e.  CC )
1816, 17sylan 457 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) ) `  j )  e.  CC )
19 addcl 8835 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( k  +  m
)  e.  CC )
2019adantl 452 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( k  +  m )  e.  CC )
21 simpl 443 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  ->  A  e.  CC )
22 elfznn0 10838 . . . . . 6  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
2321, 22, 15syl2an 463 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( ( n  e.  NN0  |->  ( ( A ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
24 simpr 447 . . . . . 6  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
2524, 5syl6eleq 2386 . . . . 5  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
j  e.  ( ZZ>= ` 
0 ) )
26 cjadd 11642 . . . . . 6  |-  ( ( k  e.  CC  /\  m  e.  CC )  ->  ( * `  (
k  +  m ) )  =  ( ( * `  k )  +  ( * `  m ) ) )
2726adantl 452 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  ( k  e.  CC  /\  m  e.  CC ) )  ->  ( * `  ( k  +  m
) )  =  ( ( * `  k
)  +  ( * `
 m ) ) )
28 expcl 11137 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
29 faccl 11314 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3029adantl 452 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
3130nncnd 9778 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
3230nnne0d 9806 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  =/=  0 )
3328, 31, 32cjdivd 11724 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( * `  ( A ^ k ) )  /  ( * `  ( ! `  k ) ) ) )
34 cjexp 11651 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( A ^ k ) )  =  ( ( * `
 A ) ^
k ) )
3530nnred 9777 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
3635cjred 11727 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  ( ! `  k )
)  =  ( ! `
 k ) )
3734, 36oveq12d 5892 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( * `  ( A ^ k ) )  /  ( * `
 ( ! `  k ) ) )  =  ( ( ( * `  A ) ^ k )  / 
( ! `  k
) ) )
3833, 37eqtrd 2328 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( * `  A
) ^ k )  /  ( ! `  k ) ) )
3913fveq2d 5545 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( * `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
402eftval 12374 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( ( * `
 A ) ^
k )  /  ( ! `  k )
) )
4140adantl 452 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  =  ( ( ( * `  A ) ^ k
)  /  ( ! `
 k ) ) )
4238, 39, 413eqtr4d 2338 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( * `  (
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( ( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) `  k
) )
4321, 22, 42syl2an 463 . . . . 5  |-  ( ( ( A  e.  CC  /\  j  e.  NN0 )  /\  k  e.  (
0 ... j ) )  ->  ( * `  ( ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )
4420, 23, 25, 27, 43seqhomo 11109 . . . 4  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( * `  (  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) ) ) `  j ) )  =  (  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j ) )
4544eqcomd 2301 . . 3  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
(  seq  0 (  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) ) `  j )  =  ( * `  (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( A ^ n )  / 
( ! `  n
) ) ) ) `
 j ) ) )
465, 7, 9, 11, 18, 45climcj 12094 . 2  |-  ( A  e.  CC  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( ( * `
 A ) ^
n )  /  ( ! `  n )
) ) )  ~~>  ( * `
 ( exp `  A
) ) )
47 climuni 12042 . 2  |-  ( (  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( ( * `  A ) ^ n )  / 
( ! `  n
) ) ) )  ~~>  ( exp `  (
* `  A )
)  /\  seq  0
(  +  ,  ( n  e.  NN0  |->  ( ( ( * `  A
) ^ n )  /  ( ! `  n ) ) ) )  ~~>  ( * `  ( exp `  A ) ) )  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
484, 46, 47syl2anc 642 1  |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753    + caddc 8756    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798    seq cseq 11062   ^cexp 11120   !cfa 11304   *ccj 11597    ~~> cli 11974   expce 12359
This theorem is referenced by:  resinval  12431  recosval  12432  logcj  19976  cosargd  19978
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365
  Copyright terms: Public domain W3C validator