MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Unicode version

Theorem efcllem 12375
Description: Lemma for efcl 12380. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 12355 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
efcllem  |-  ( A  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem efcllem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10278 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2296 . 2  |-  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )  =  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )
3 2nn 9893 . . . 4  |-  2  e.  NN
4 nnrecre 9798 . . . 4  |-  ( 2  e.  NN  ->  (
1  /  2 )  e.  RR )
53, 4ax-mp 8 . . 3  |-  ( 1  /  2 )  e.  RR
65a1i 10 . 2  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  RR )
7 halflt1 9949 . . 3  |-  ( 1  /  2 )  <  1
87a1i 10 . 2  |-  ( A  e.  CC  ->  (
1  /  2 )  <  1 )
9 2re 9831 . . . 4  |-  2  e.  RR
10 abscl 11779 . . . 4  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
11 remulcl 8838 . . . 4  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
129, 10, 11sylancr 644 . . 3  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
13 absge0 11788 . . . 4  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
14 0re 8854 . . . . . 6  |-  0  e.  RR
15 2pos 9844 . . . . . 6  |-  0  <  2
1614, 9, 15ltleii 8957 . . . . 5  |-  0  <_  2
17 mulge0 9307 . . . . 5  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) ) )  ->  0  <_  (
2  x.  ( abs `  A ) ) )
189, 16, 17mpanl12 663 . . . 4  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  0  <_  ( 2  x.  ( abs `  A ) ) )
1910, 13, 18syl2anc 642 . . 3  |-  ( A  e.  CC  ->  0  <_  ( 2  x.  ( abs `  A ) ) )
20 flge0nn0 10964 . . 3  |-  ( ( ( 2  x.  ( abs `  A ) )  e.  RR  /\  0  <_  ( 2  x.  ( abs `  A ) ) )  ->  ( |_ `  ( 2  x.  ( abs `  A ) ) )  e.  NN0 )
2112, 19, 20syl2anc 642 . 2  |-  ( A  e.  CC  ->  ( |_ `  ( 2  x.  ( abs `  A
) ) )  e. 
NN0 )
22 eftval.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
2322eftval 12374 . . . 4  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
2423adantl 452 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
25 eftcl 12371 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
2624, 25eqeltrd 2370 . 2  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
2710adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  A )  e.  RR )
28 eluznn0 10304 . . . . . . 7  |-  ( ( ( |_ `  (
2  x.  ( abs `  A ) ) )  e.  NN0  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A ) ) ) ) )  -> 
k  e.  NN0 )
2921, 28sylan 457 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  k  e.  NN0 )
30 nn0p1nn 10019 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3129, 30syl 15 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  NN )
3227, 31nndivred 9810 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
335a1i 10 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 1  /  2 )  e.  RR )
3427, 29reexpcld 11278 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
k )  e.  RR )
35 faccl 11314 . . . . . 6  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3629, 35syl 15 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  NN )
3734, 36nndivred 9810 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
38 expcl 11137 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
3929, 38syldan 456 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( A ^ k )  e.  CC )
4039absge0d 11942 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( abs `  ( A ^ k ) ) )
41 absexp 11805 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
4229, 41syldan 456 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
4340, 42breqtrd 4063 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ( abs `  A
) ^ k ) )
4436nnred 9777 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  RR )
4536nngt0d 9805 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <  ( ! `  k ) )
46 divge0 9641 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4734, 43, 44, 45, 46syl22anc 1183 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4812adantr 451 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
49 peano2nn0 10020 . . . . . . . . . . 11  |-  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  e. 
NN0  ->  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 )  e.  NN0 )
5021, 49syl 15 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 )  e. 
NN0 )
5150nn0red 10035 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 )  e.  RR )
5251adantr 451 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 )  e.  RR )
5331nnred 9777 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  RR )
54 flltp1 10948 . . . . . . . . 9  |-  ( ( 2  x.  ( abs `  A ) )  e.  RR  ->  ( 2  x.  ( abs `  A
) )  <  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )
5548, 54syl 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  <  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )
56 eluzp1p1 10269 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )  ->  ( k  +  1 )  e.  (
ZZ>= `  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 ) ) )
5756adantl 452 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 ) ) )
58 eluzle 10256 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )  ->  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 )  <_  (
k  +  1 ) )
5957, 58syl 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 )  <_  (
k  +  1 ) )
6048, 52, 53, 55, 59ltletrd 8992 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
6127recnd 8877 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  A )  e.  CC )
62 2cn 9832 . . . . . . . 8  |-  2  e.  CC
63 mulcom 8839 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6461, 62, 63sylancl 643 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6531nncnd 9778 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  CC )
6665mulid2d 8869 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6760, 64, 663brtr4d 4069 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
689, 15pm3.2i 441 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
6968a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
70 1re 8853 . . . . . . . 8  |-  1  e.  RR
7170a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  1  e.  RR )
7231nngt0d 9805 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <  ( k  +  1 ) )
7353, 72jca 518 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) )
74 lt2mul2div 9648 . . . . . . 7  |-  ( ( ( ( abs `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  /\  ( 1  e.  RR  /\  (
( k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) ) )  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
7527, 69, 71, 73, 74syl22anc 1183 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
7667, 75mpbid 201 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
77 ltle 8926 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7832, 5, 77sylancl 643 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7976, 78mpd 14 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
8032, 33, 37, 47, 79lemul2ad 9713 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
81 peano2nn0 10020 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
8229, 81syl 15 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e. 
NN0 )
8322eftval 12374 . . . . . 6  |-  ( ( k  +  1 )  e.  NN0  ->  ( F `
 ( k  +  1 ) )  =  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
8482, 83syl 15 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
8584fveq2d 5545 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
86 absexp 11805 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
8782, 86syldan 456 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8861, 29expp1d 11262 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8987, 88eqtrd 2328 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
90 faccl 11314 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
9182, 90syl 15 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  NN )
9291nnred 9777 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  RR )
9391nnnn0d 10034 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
9493nn0ge0d 10037 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ! `  ( k  +  1 ) ) )
9592, 94absidd 11921 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
96 facp1 11309 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
9729, 96syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9895, 97eqtrd 2328 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9989, 98oveq12d 5892 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
100 expcl 11137 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  CC )
10182, 100syldan 456 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  CC )
10291nncnd 9778 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  CC )
10391nnne0d 9806 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  =/=  0
)
104101, 102, 103absdivd 11953 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
10534recnd 8877 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
k )  e.  CC )
10636nncnd 9778 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  CC )
10736nnne0d 9806 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  =/=  0
)
10831nnne0d 9806 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  =/=  0 )
109105, 106, 61, 65, 107, 108divmuldivd 9593 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
11099, 104, 1093eqtr4d 2338 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
11185, 110eqtrd 2328 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
1125recni 8865 . . . . 5  |-  ( 1  /  2 )  e.  CC
11329, 26syldan 456 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  k )  e.  CC )
114113abscld 11934 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
115114recnd 8877 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  e.  CC )
116 mulcom 8839 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
117112, 115, 116sylancr 644 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
11829, 23syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
119118fveq2d 5545 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
120 eftabs 12373 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
12129, 120syldan 456 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
122119, 121eqtrd 2328 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
123122oveq1d 5889 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
124117, 123eqtrd 2328 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
12580, 111, 1243brtr4d 4069 . 2  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1261, 2, 6, 8, 21, 26, 125cvgrat 12355 1  |-  ( A  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZ>=cuz 10246   |_cfl 10940    seq cseq 11062   ^cexp 11120   !cfa 11304   abscabs 11735    ~~> cli 11974
This theorem is referenced by:  eff  12379  efcvg  12382  reefcl  12384  efaddlem  12390  eftlcvg  12402  effsumlt  12407  eflegeo  12417  eirrlem  12498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175
  Copyright terms: Public domain W3C validator