MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Unicode version

Theorem efcllem 12359
Description: Lemma for efcl 12364. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 12339 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
efcllem  |-  ( A  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
Distinct variable group:    A, n
Allowed substitution hint:    F( n)

Proof of Theorem efcllem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 10262 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2283 . 2  |-  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )  =  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )
3 2nn 9877 . . . 4  |-  2  e.  NN
4 nnrecre 9782 . . . 4  |-  ( 2  e.  NN  ->  (
1  /  2 )  e.  RR )
53, 4ax-mp 8 . . 3  |-  ( 1  /  2 )  e.  RR
65a1i 10 . 2  |-  ( A  e.  CC  ->  (
1  /  2 )  e.  RR )
7 halflt1 9933 . . 3  |-  ( 1  /  2 )  <  1
87a1i 10 . 2  |-  ( A  e.  CC  ->  (
1  /  2 )  <  1 )
9 2re 9815 . . . 4  |-  2  e.  RR
10 abscl 11763 . . . 4  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
11 remulcl 8822 . . . 4  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
129, 10, 11sylancr 644 . . 3  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
13 absge0 11772 . . . 4  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
14 0re 8838 . . . . . 6  |-  0  e.  RR
15 2pos 9828 . . . . . 6  |-  0  <  2
1614, 9, 15ltleii 8941 . . . . 5  |-  0  <_  2
17 mulge0 9291 . . . . 5  |-  ( ( ( 2  e.  RR  /\  0  <_  2 )  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) ) )  ->  0  <_  (
2  x.  ( abs `  A ) ) )
189, 16, 17mpanl12 663 . . . 4  |-  ( ( ( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) )  ->  0  <_  ( 2  x.  ( abs `  A ) ) )
1910, 13, 18syl2anc 642 . . 3  |-  ( A  e.  CC  ->  0  <_  ( 2  x.  ( abs `  A ) ) )
20 flge0nn0 10948 . . 3  |-  ( ( ( 2  x.  ( abs `  A ) )  e.  RR  /\  0  <_  ( 2  x.  ( abs `  A ) ) )  ->  ( |_ `  ( 2  x.  ( abs `  A ) ) )  e.  NN0 )
2112, 19, 20syl2anc 642 . 2  |-  ( A  e.  CC  ->  ( |_ `  ( 2  x.  ( abs `  A
) ) )  e. 
NN0 )
22 eftval.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
2322eftval 12358 . . . 4  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( A ^
k )  /  ( ! `  k )
) )
2423adantl 452 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
25 eftcl 12355 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
2624, 25eqeltrd 2357 . 2  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
2710adantr 451 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  A )  e.  RR )
28 eluznn0 10288 . . . . . . 7  |-  ( ( ( |_ `  (
2  x.  ( abs `  A ) ) )  e.  NN0  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A ) ) ) ) )  -> 
k  e.  NN0 )
2921, 28sylan 457 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  k  e.  NN0 )
30 nn0p1nn 10003 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3129, 30syl 15 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  NN )
3227, 31nndivred 9794 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
335a1i 10 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 1  /  2 )  e.  RR )
3427, 29reexpcld 11262 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
k )  e.  RR )
35 faccl 11298 . . . . . 6  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3629, 35syl 15 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  NN )
3734, 36nndivred 9794 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
38 expcl 11121 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
3929, 38syldan 456 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( A ^ k )  e.  CC )
4039absge0d 11926 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( abs `  ( A ^ k ) ) )
41 absexp 11789 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
4229, 41syldan 456 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
4340, 42breqtrd 4047 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ( abs `  A
) ^ k ) )
4436nnred 9761 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  RR )
4536nngt0d 9789 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <  ( ! `  k ) )
46 divge0 9625 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4734, 43, 44, 45, 46syl22anc 1183 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4812adantr 451 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
49 peano2nn0 10004 . . . . . . . . . . 11  |-  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  e. 
NN0  ->  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 )  e.  NN0 )
5021, 49syl 15 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 )  e. 
NN0 )
5150nn0red 10019 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 )  e.  RR )
5251adantr 451 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 )  e.  RR )
5331nnred 9761 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  RR )
54 flltp1 10932 . . . . . . . . 9  |-  ( ( 2  x.  ( abs `  A ) )  e.  RR  ->  ( 2  x.  ( abs `  A
) )  <  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )
5548, 54syl 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  <  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )
56 eluzp1p1 10253 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) )  ->  ( k  +  1 )  e.  (
ZZ>= `  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 ) ) )
5756adantl 452 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  ( ZZ>= `  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 ) ) )
58 eluzle 10240 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  (
( |_ `  (
2  x.  ( abs `  A ) ) )  +  1 ) )  ->  ( ( |_
`  ( 2  x.  ( abs `  A
) ) )  +  1 )  <_  (
k  +  1 ) )
5957, 58syl 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( |_ `  ( 2  x.  ( abs `  A
) ) )  +  1 )  <_  (
k  +  1 ) )
6048, 52, 53, 55, 59ltletrd 8976 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
6127recnd 8861 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  A )  e.  CC )
62 2cn 9816 . . . . . . . 8  |-  2  e.  CC
63 mulcom 8823 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6461, 62, 63sylancl 643 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6531nncnd 9762 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e.  CC )
6665mulid2d 8853 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6760, 64, 663brtr4d 4053 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
689, 15pm3.2i 441 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
6968a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( 2  e.  RR  /\  0  <  2 ) )
70 1re 8837 . . . . . . . 8  |-  1  e.  RR
7170a1i 10 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  1  e.  RR )
7231nngt0d 9789 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <  ( k  +  1 ) )
7353, 72jca 518 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) )
74 lt2mul2div 9632 . . . . . . 7  |-  ( ( ( ( abs `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  /\  ( 1  e.  RR  /\  (
( k  +  1 )  e.  RR  /\  0  <  ( k  +  1 ) ) ) )  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
7527, 69, 71, 73, 74syl22anc 1183 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
7667, 75mpbid 201 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
77 ltle 8910 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7832, 5, 77sylancl 643 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7976, 78mpd 14 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
8032, 33, 37, 47, 79lemul2ad 9697 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
81 peano2nn0 10004 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
8229, 81syl 15 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  e. 
NN0 )
8322eftval 12358 . . . . . 6  |-  ( ( k  +  1 )  e.  NN0  ->  ( F `
 ( k  +  1 ) )  =  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
8482, 83syl 15 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
8584fveq2d 5529 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
86 absexp 11789 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
8782, 86syldan 456 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8861, 29expp1d 11246 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8987, 88eqtrd 2315 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
90 faccl 11298 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
9182, 90syl 15 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  NN )
9291nnred 9761 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  RR )
9391nnnn0d 10018 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
9493nn0ge0d 10021 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  0  <_  ( ! `  ( k  +  1 ) ) )
9592, 94absidd 11905 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
96 facp1 11293 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
9729, 96syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9895, 97eqtrd 2315 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9989, 98oveq12d 5876 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
100 expcl 11121 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  CC )
10182, 100syldan 456 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  CC )
10291nncnd 9762 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  e.  CC )
10391nnne0d 9790 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  ( k  +  1 ) )  =/=  0
)
104101, 102, 103absdivd 11937 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
10534recnd 8861 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  A ) ^
k )  e.  CC )
10636nncnd 9762 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  e.  CC )
10736nnne0d 9790 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ! `  k )  =/=  0
)
10831nnne0d 9790 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( k  +  1 )  =/=  0 )
109105, 106, 61, 65, 107, 108divmuldivd 9577 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
11099, 104, 1093eqtr4d 2325 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
11185, 110eqtrd 2315 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
1125recni 8849 . . . . 5  |-  ( 1  /  2 )  e.  CC
11329, 26syldan 456 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  k )  e.  CC )
114113abscld 11918 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
115114recnd 8861 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  e.  CC )
116 mulcom 8823 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
117112, 115, 116sylancr 644 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
11829, 23syl 15 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
119118fveq2d 5529 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
120 eftabs 12357 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
12129, 120syldan 456 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
122119, 121eqtrd 2315 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
123122oveq1d 5873 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
124117, 123eqtrd 2315 . . 3  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
12580, 111, 1243brtr4d 4053 . 2  |-  ( ( A  e.  CC  /\  k  e.  ( ZZ>= `  ( |_ `  ( 2  x.  ( abs `  A
) ) ) ) )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1261, 2, 6, 8, 21, 26, 125cvgrat 12339 1  |-  ( A  e.  CC  ->  seq  0 (  +  ,  F )  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZ>=cuz 10230   |_cfl 10924    seq cseq 11046   ^cexp 11104   !cfa 11288   abscabs 11719    ~~> cli 11958
This theorem is referenced by:  eff  12363  efcvg  12366  reefcl  12368  efaddlem  12374  eftlcvg  12386  effsumlt  12391  eflegeo  12401  eirrlem  12482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator