MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvx Unicode version

Theorem efcvx 19841
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
efcvx  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( exp `  A ) )  +  ( ( 1  -  T )  x.  ( exp `  B ) ) ) )

Proof of Theorem efcvx
StepHypRef Expression
1 simpl1 958 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
2 simpl2 959 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  RR )
3 simpl3 960 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  <  B
)
4 reeff1o 19839 . . . . . . 7  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
5 f1of 5488 . . . . . . 7  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
64, 5ax-mp 8 . . . . . 6  |-  ( exp  |`  RR ) : RR --> RR+
7 rpssre 10380 . . . . . 6  |-  RR+  C_  RR
8 fss 5413 . . . . . 6  |-  ( ( ( exp  |`  RR ) : RR --> RR+  /\  RR+  C_  RR )  ->  ( exp  |`  RR ) : RR --> RR )
96, 7, 8mp2an 653 . . . . 5  |-  ( exp  |`  RR ) : RR --> RR
10 iccssre 10747 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
111, 2, 10syl2anc 642 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A [,] B )  C_  RR )
12 fssres2 5425 . . . . 5  |-  ( ( ( exp  |`  RR ) : RR --> RR  /\  ( A [,] B ) 
C_  RR )  -> 
( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
139, 11, 12sylancr 644 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
14 ax-resscn 8810 . . . . 5  |-  RR  C_  CC
1511, 14syl6ss 3204 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A [,] B )  C_  CC )
16 efcn 19835 . . . . . 6  |-  exp  e.  ( CC -cn-> CC )
17 rescncf 18417 . . . . . 6  |-  ( ( A [,] B ) 
C_  CC  ->  ( exp 
e.  ( CC -cn-> CC )  ->  ( exp  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) ) )
1815, 16, 17ee10 1366 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
19 cncffvrn 18418 . . . . 5  |-  ( ( RR  C_  CC  /\  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  ( ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR ) )
2014, 18, 19sylancr 644 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( exp  |`  ( A [,] B
) ) : ( A [,] B ) --> RR ) )
2113, 20mpbird 223 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
22 reefiso 19840 . . . . . 6  |-  ( exp  |`  RR )  Isom  <  ,  <  ( RR ,  RR+ )
2322a1i 10 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  RR ) 
Isom  <  ,  <  ( RR ,  RR+ ) )
24 ioossre 10728 . . . . . 6  |-  ( A (,) B )  C_  RR
2524a1i 10 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A (,) B )  C_  RR )
26 eqidd 2297 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR ) " ( A (,) B ) )  =  ( ( exp  |`  RR ) " ( A (,) B ) ) )
27 isores3 5848 . . . . 5  |-  ( ( ( exp  |`  RR ) 
Isom  <  ,  <  ( RR ,  RR+ )  /\  ( A (,) B ) 
C_  RR  /\  (
( exp  |`  RR )
" ( A (,) B ) )  =  ( ( exp  |`  RR )
" ( A (,) B ) ) )  ->  ( ( exp  |`  RR )  |`  ( A (,) B ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
2823, 25, 26, 27syl3anc 1182 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR )  |`  ( A (,) B ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
29 ssid 3210 . . . . . . 7  |-  RR  C_  RR
30 fss 5413 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR --> RR  /\  RR  C_  CC )  -> 
( exp  |`  RR ) : RR --> CC )
319, 14, 30mp2an 653 . . . . . . . 8  |-  ( exp  |`  RR ) : RR --> CC
32 eqid 2296 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3332tgioo2 18325 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
3432, 33dvres 19277 . . . . . . . 8  |-  ( ( ( RR  C_  CC  /\  ( exp  |`  RR ) : RR --> CC )  /\  ( RR  C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
3514, 31, 34mpanl12 663 . . . . . . 7  |-  ( ( RR  C_  RR  /\  ( A [,] B )  C_  RR )  ->  ( RR 
_D  ( ( exp  |`  RR )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
3629, 11, 35sylancr 644 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B
) ) )  =  ( ( RR  _D  ( exp  |`  RR )
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) ) ) )
37 resabs1 5000 . . . . . . . 8  |-  ( ( A [,] B ) 
C_  RR  ->  ( ( exp  |`  RR )  |`  ( A [,] B
) )  =  ( exp  |`  ( A [,] B ) ) )
3811, 37syl 15 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR )  |`  ( A [,] B ) )  =  ( exp  |`  ( A [,] B ) ) )
3938oveq2d 5890 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B
) ) )  =  ( RR  _D  ( exp  |`  ( A [,] B ) ) ) )
40 reex 8844 . . . . . . . . . . 11  |-  RR  e.  _V
4140prid1 3747 . . . . . . . . . 10  |-  RR  e.  { RR ,  CC }
42 eff 12379 . . . . . . . . . 10  |-  exp : CC
--> CC
43 ssid 3210 . . . . . . . . . 10  |-  CC  C_  CC
44 dvef 19343 . . . . . . . . . . . . 13  |-  ( CC 
_D  exp )  =  exp
4544dmeqi 4896 . . . . . . . . . . . 12  |-  dom  ( CC  _D  exp )  =  dom  exp
4642fdmi 5410 . . . . . . . . . . . 12  |-  dom  exp  =  CC
4745, 46eqtri 2316 . . . . . . . . . . 11  |-  dom  ( CC  _D  exp )  =  CC
4814, 47sseqtr4i 3224 . . . . . . . . . 10  |-  RR  C_  dom  ( CC  _D  exp )
49 dvres3 19279 . . . . . . . . . 10  |-  ( ( ( RR  e.  { RR ,  CC }  /\  exp : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_  dom  ( CC  _D  exp )
) )  ->  ( RR  _D  ( exp  |`  RR ) )  =  ( ( CC  _D  exp )  |`  RR ) )
5041, 42, 43, 48, 49mp4an 654 . . . . . . . . 9  |-  ( RR 
_D  ( exp  |`  RR ) )  =  ( ( CC  _D  exp )  |`  RR )
5144reseq1i 4967 . . . . . . . . 9  |-  ( ( CC  _D  exp )  |`  RR )  =  ( exp  |`  RR )
5250, 51eqtri 2316 . . . . . . . 8  |-  ( RR 
_D  ( exp  |`  RR ) )  =  ( exp  |`  RR )
5352a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  RR )
)  =  ( exp  |`  RR ) )
54 iccntr 18342 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
551, 2, 54syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5653, 55reseq12d 4972 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( RR 
_D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B
) ) )
5736, 39, 563eqtr3d 2336 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  ( A [,] B ) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B ) ) )
58 isoeq1 5832 . . . . 5  |-  ( ( RR  _D  ( exp  |`  ( A [,] B
) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B
) )  ->  (
( RR  _D  ( exp  |`  ( A [,] B ) ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) )  <-> 
( ( exp  |`  RR )  |`  ( A (,) B
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ( ( exp  |`  RR )
" ( A (,) B ) ) ) ) )
5957, 58syl 15 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( RR 
_D  ( exp  |`  ( A [,] B ) ) )  Isom  <  ,  <  ( ( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) )  <-> 
( ( exp  |`  RR )  |`  ( A (,) B
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ( ( exp  |`  RR )
" ( A (,) B ) ) ) ) )
6028, 59mpbird 223 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  ( A [,] B ) ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
61 simpr 447 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  ( 0 (,) 1 ) )
62 eqid 2296 . . 3  |-  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
631, 2, 3, 21, 60, 61, 62dvcvx 19383 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( ( exp  |`  ( A [,] B ) ) `  A ) )  +  ( ( 1  -  T )  x.  (
( exp  |`  ( A [,] B ) ) `
 B ) ) ) )
64 ax-1cn 8811 . . . . . . 7  |-  1  e.  CC
65 ioossre 10728 . . . . . . . . 9  |-  ( 0 (,) 1 )  C_  RR
6665, 61sseldi 3191 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  RR )
6766recnd 8877 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  CC )
68 nncan 9092 . . . . . . 7  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
6964, 67, 68sylancr 644 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( 1  -  ( 1  -  T
) )  =  T )
7069oveq1d 5889 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( 1  -  ( 1  -  T ) )  x.  A )  =  ( T  x.  A ) )
7170oveq1d 5889 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  =  ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )
72 ioossicc 10751 . . . . . . 7  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
7372, 61sseldi 3191 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  ( 0 [,] 1 ) )
74 iirev 18443 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
7573, 74syl 15 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( 1  -  T )  e.  ( 0 [,] 1 ) )
76 lincmb01cmp 10793 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
7775, 76syldan 456 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
7871, 77eqeltrrd 2371 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
79 fvres 5558 . . 3  |-  ( ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  =  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
8078, 79syl 15 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  ( exp `  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
811rexrd 8897 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  RR* )
822rexrd 8897 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  RR* )
831, 2, 3ltled 8983 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  <_  B
)
84 lbicc2 10768 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
8581, 82, 83, 84syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  ( A [,] B ) )
86 fvres 5558 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 A )  =  ( exp `  A
) )
8785, 86syl 15 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  A
)  =  ( exp `  A ) )
8887oveq2d 5890 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( T  x.  ( ( exp  |`  ( A [,] B ) ) `
 A ) )  =  ( T  x.  ( exp `  A ) ) )
89 ubicc2 10769 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
9081, 82, 83, 89syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  ( A [,] B ) )
91 fvres 5558 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 B )  =  ( exp `  B
) )
9290, 91syl 15 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  B
)  =  ( exp `  B ) )
9392oveq2d 5890 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( 1  -  T )  x.  ( ( exp  |`  ( A [,] B ) ) `
 B ) )  =  ( ( 1  -  T )  x.  ( exp `  B
) ) )
9488, 93oveq12d 5892 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( T  x.  ( ( exp  |`  ( A [,] B
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( exp  |`  ( A [,] B ) ) `  B ) ) )  =  ( ( T  x.  ( exp `  A
) )  +  ( ( 1  -  T
)  x.  ( exp `  B ) ) ) )
9563, 80, 943brtr3d 4068 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( exp `  A ) )  +  ( ( 1  -  T )  x.  ( exp `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    C_ wss 3165   {cpr 3654   class class class wbr 4039   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271    Isom wiso 5272  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053   RR+crp 10370   (,)cioo 10672   [,]cicc 10675   expce 12359   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   intcnt 16770   -cn->ccncf 18396    _D cdv 19229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator