MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvx Structured version   Unicode version

Theorem efcvx 20365
Description: The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
efcvx  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( exp `  A ) )  +  ( ( 1  -  T )  x.  ( exp `  B ) ) ) )

Proof of Theorem efcvx
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
2 simpl2 961 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  RR )
3 simpl3 962 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  <  B
)
4 reeff1o 20363 . . . . . . 7  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
5 f1of 5674 . . . . . . 7  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  ->  ( exp  |`  RR ) : RR --> RR+ )
64, 5ax-mp 8 . . . . . 6  |-  ( exp  |`  RR ) : RR --> RR+
7 rpssre 10622 . . . . . 6  |-  RR+  C_  RR
8 fss 5599 . . . . . 6  |-  ( ( ( exp  |`  RR ) : RR --> RR+  /\  RR+  C_  RR )  ->  ( exp  |`  RR ) : RR --> RR )
96, 7, 8mp2an 654 . . . . 5  |-  ( exp  |`  RR ) : RR --> RR
10 iccssre 10992 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
111, 2, 10syl2anc 643 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A [,] B )  C_  RR )
12 fssres2 5611 . . . . 5  |-  ( ( ( exp  |`  RR ) : RR --> RR  /\  ( A [,] B ) 
C_  RR )  -> 
( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
139, 11, 12sylancr 645 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR )
14 ax-resscn 9047 . . . . 5  |-  RR  C_  CC
1511, 14syl6ss 3360 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A [,] B )  C_  CC )
16 efcn 20359 . . . . . 6  |-  exp  e.  ( CC -cn-> CC )
17 rescncf 18927 . . . . . 6  |-  ( ( A [,] B ) 
C_  CC  ->  ( exp 
e.  ( CC -cn-> CC )  ->  ( exp  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> CC ) ) )
1815, 16, 17ee10 1385 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
19 cncffvrn 18928 . . . . 5  |-  ( ( RR  C_  CC  /\  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  ( ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( exp  |`  ( A [,] B ) ) : ( A [,] B ) --> RR ) )
2014, 18, 19sylancr 645 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) )  e.  ( ( A [,] B
) -cn-> RR )  <->  ( exp  |`  ( A [,] B
) ) : ( A [,] B ) --> RR ) )
2113, 20mpbird 224 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> RR ) )
22 reefiso 20364 . . . . . 6  |-  ( exp  |`  RR )  Isom  <  ,  <  ( RR ,  RR+ )
2322a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp  |`  RR ) 
Isom  <  ,  <  ( RR ,  RR+ ) )
24 ioossre 10972 . . . . . 6  |-  ( A (,) B )  C_  RR
2524a1i 11 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( A (,) B )  C_  RR )
26 eqidd 2437 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR ) " ( A (,) B ) )  =  ( ( exp  |`  RR ) " ( A (,) B ) ) )
27 isores3 6055 . . . . 5  |-  ( ( ( exp  |`  RR ) 
Isom  <  ,  <  ( RR ,  RR+ )  /\  ( A (,) B ) 
C_  RR  /\  (
( exp  |`  RR )
" ( A (,) B ) )  =  ( ( exp  |`  RR )
" ( A (,) B ) ) )  ->  ( ( exp  |`  RR )  |`  ( A (,) B ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
2823, 25, 26, 27syl3anc 1184 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR )  |`  ( A (,) B ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
29 ssid 3367 . . . . . . 7  |-  RR  C_  RR
30 fss 5599 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR --> RR  /\  RR  C_  CC )  -> 
( exp  |`  RR ) : RR --> CC )
319, 14, 30mp2an 654 . . . . . . . 8  |-  ( exp  |`  RR ) : RR --> CC
32 eqid 2436 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3332tgioo2 18834 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
3432, 33dvres 19798 . . . . . . . 8  |-  ( ( ( RR  C_  CC  /\  ( exp  |`  RR ) : RR --> CC )  /\  ( RR  C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
3514, 31, 34mpanl12 664 . . . . . . 7  |-  ( ( RR  C_  RR  /\  ( A [,] B )  C_  RR )  ->  ( RR 
_D  ( ( exp  |`  RR )  |`  ( A [,] B ) ) )  =  ( ( RR  _D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
3629, 11, 35sylancr 645 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B
) ) )  =  ( ( RR  _D  ( exp  |`  RR )
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) ) ) )
37 resabs1 5175 . . . . . . . 8  |-  ( ( A [,] B ) 
C_  RR  ->  ( ( exp  |`  RR )  |`  ( A [,] B
) )  =  ( exp  |`  ( A [,] B ) ) )
3811, 37syl 16 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  RR )  |`  ( A [,] B ) )  =  ( exp  |`  ( A [,] B ) ) )
3938oveq2d 6097 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( ( exp  |`  RR )  |`  ( A [,] B
) ) )  =  ( RR  _D  ( exp  |`  ( A [,] B ) ) ) )
40 reex 9081 . . . . . . . . . . 11  |-  RR  e.  _V
4140prid1 3912 . . . . . . . . . 10  |-  RR  e.  { RR ,  CC }
42 eff 12684 . . . . . . . . . 10  |-  exp : CC
--> CC
43 ssid 3367 . . . . . . . . . 10  |-  CC  C_  CC
44 dvef 19864 . . . . . . . . . . . . 13  |-  ( CC 
_D  exp )  =  exp
4544dmeqi 5071 . . . . . . . . . . . 12  |-  dom  ( CC  _D  exp )  =  dom  exp
4642fdmi 5596 . . . . . . . . . . . 12  |-  dom  exp  =  CC
4745, 46eqtri 2456 . . . . . . . . . . 11  |-  dom  ( CC  _D  exp )  =  CC
4814, 47sseqtr4i 3381 . . . . . . . . . 10  |-  RR  C_  dom  ( CC  _D  exp )
49 dvres3 19800 . . . . . . . . . 10  |-  ( ( ( RR  e.  { RR ,  CC }  /\  exp : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_  dom  ( CC  _D  exp )
) )  ->  ( RR  _D  ( exp  |`  RR ) )  =  ( ( CC  _D  exp )  |`  RR ) )
5041, 42, 43, 48, 49mp4an 655 . . . . . . . . 9  |-  ( RR 
_D  ( exp  |`  RR ) )  =  ( ( CC  _D  exp )  |`  RR )
5144reseq1i 5142 . . . . . . . . 9  |-  ( ( CC  _D  exp )  |`  RR )  =  ( exp  |`  RR )
5250, 51eqtri 2456 . . . . . . . 8  |-  ( RR 
_D  ( exp  |`  RR ) )  =  ( exp  |`  RR )
5352a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  RR )
)  =  ( exp  |`  RR ) )
54 iccntr 18852 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
551, 2, 54syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5653, 55reseq12d 5147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( RR 
_D  ( exp  |`  RR ) )  |`  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B
) ) )
5736, 39, 563eqtr3d 2476 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  ( A [,] B ) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B ) ) )
58 isoeq1 6039 . . . . 5  |-  ( ( RR  _D  ( exp  |`  ( A [,] B
) ) )  =  ( ( exp  |`  RR )  |`  ( A (,) B
) )  ->  (
( RR  _D  ( exp  |`  ( A [,] B ) ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) )  <-> 
( ( exp  |`  RR )  |`  ( A (,) B
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ( ( exp  |`  RR )
" ( A (,) B ) ) ) ) )
5957, 58syl 16 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( RR 
_D  ( exp  |`  ( A [,] B ) ) )  Isom  <  ,  <  ( ( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) )  <-> 
( ( exp  |`  RR )  |`  ( A (,) B
) )  Isom  <  ,  <  ( ( A (,) B ) ,  ( ( exp  |`  RR )
" ( A (,) B ) ) ) ) )
6028, 59mpbird 224 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( RR  _D  ( exp  |`  ( A [,] B ) ) ) 
Isom  <  ,  <  (
( A (,) B
) ,  ( ( exp  |`  RR ) " ( A (,) B ) ) ) )
61 simpr 448 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  ( 0 (,) 1 ) )
62 eqid 2436 . . 3  |-  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) )  =  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )
631, 2, 3, 21, 60, 61, 62dvcvx 19904 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( ( exp  |`  ( A [,] B ) ) `  A ) )  +  ( ( 1  -  T )  x.  (
( exp  |`  ( A [,] B ) ) `
 B ) ) ) )
64 ax-1cn 9048 . . . . . . 7  |-  1  e.  CC
65 ioossre 10972 . . . . . . . . 9  |-  ( 0 (,) 1 )  C_  RR
6665, 61sseldi 3346 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  RR )
6766recnd 9114 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  CC )
68 nncan 9330 . . . . . . 7  |-  ( ( 1  e.  CC  /\  T  e.  CC )  ->  ( 1  -  (
1  -  T ) )  =  T )
6964, 67, 68sylancr 645 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( 1  -  ( 1  -  T
) )  =  T )
7069oveq1d 6096 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( 1  -  ( 1  -  T ) )  x.  A )  =  ( T  x.  A ) )
7170oveq1d 6096 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  =  ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )
72 ioossicc 10996 . . . . . . 7  |-  ( 0 (,) 1 )  C_  ( 0 [,] 1
)
7372, 61sseldi 3346 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  T  e.  ( 0 [,] 1 ) )
74 iirev 18954 . . . . . 6  |-  ( T  e.  ( 0 [,] 1 )  ->  (
1  -  T )  e.  ( 0 [,] 1 ) )
7573, 74syl 16 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( 1  -  T )  e.  ( 0 [,] 1 ) )
76 lincmb01cmp 11038 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  ( 1  -  T
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
7775, 76syldan 457 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( ( 1  -  ( 1  -  T ) )  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
7871, 77eqeltrrd 2511 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) )  e.  ( A [,] B ) )
79 fvres 5745 . . 3  |-  ( ( ( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) )  =  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) ) )
8078, 79syl 16 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  =  ( exp `  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
811rexrd 9134 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  RR* )
822rexrd 9134 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  RR* )
831, 2, 3ltled 9221 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  <_  B
)
84 lbicc2 11013 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
8581, 82, 83, 84syl3anc 1184 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  A  e.  ( A [,] B ) )
86 fvres 5745 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 A )  =  ( exp `  A
) )
8785, 86syl 16 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  A
)  =  ( exp `  A ) )
8887oveq2d 6097 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( T  x.  ( ( exp  |`  ( A [,] B ) ) `
 A ) )  =  ( T  x.  ( exp `  A ) ) )
89 ubicc2 11014 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
9081, 82, 83, 89syl3anc 1184 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  B  e.  ( A [,] B ) )
91 fvres 5745 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( exp  |`  ( A [,] B ) ) `
 B )  =  ( exp `  B
) )
9290, 91syl 16 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( exp  |`  ( A [,] B
) ) `  B
)  =  ( exp `  B ) )
9392oveq2d 6097 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( 1  -  T )  x.  ( ( exp  |`  ( A [,] B ) ) `
 B ) )  =  ( ( 1  -  T )  x.  ( exp `  B
) ) )
9488, 93oveq12d 6099 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( ( T  x.  ( ( exp  |`  ( A [,] B
) ) `  A
) )  +  ( ( 1  -  T
)  x.  ( ( exp  |`  ( A [,] B ) ) `  B ) ) )  =  ( ( T  x.  ( exp `  A
) )  +  ( ( 1  -  T
)  x.  ( exp `  B ) ) ) )
9563, 80, 943brtr3d 4241 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 (,) 1 ) )  ->  ( exp `  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) ) )  <  ( ( T  x.  ( exp `  A ) )  +  ( ( 1  -  T )  x.  ( exp `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3320   {cpr 3815   class class class wbr 4212   dom cdm 4878   ran crn 4879    |` cres 4880   "cima 4881   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454    Isom wiso 5455  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291   RR+crp 10612   (,)cioo 10916   [,]cicc 10919   expce 12664   TopOpenctopn 13649   topGenctg 13665  ℂfldccnfld 16703   intcnt 17081   -cn->ccncf 18906    _D cdv 19750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator