MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1olem Unicode version

Theorem eff1olem 20317
Description: The exponential function maps the set  S, of complex numbers with imaginary part in a real interval of length  2  x.  pi, one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Proof shortened by Mario Carneiro, 13-May-2014.)
Hypotheses
Ref Expression
eff1olem.1  |-  F  =  ( w  e.  D  |->  ( exp `  (
_i  x.  w )
) )
eff1olem.2  |-  S  =  ( `' Im " D )
eff1olem.3  |-  ( ph  ->  D  C_  RR )
eff1olem.4  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( abs `  (
x  -  y ) )  <  ( 2  x.  pi ) )
eff1olem.5  |-  ( (
ph  /\  z  e.  RR )  ->  E. y  e.  D  ( (
z  -  y )  /  ( 2  x.  pi ) )  e.  ZZ )
Assertion
Ref Expression
eff1olem  |-  ( ph  ->  ( exp  |`  S ) : S -1-1-onto-> ( CC  \  {
0 } ) )
Distinct variable groups:    x, w, y, z, D    x, F, y, z    ph, w, x, y, z    x, S, y
Allowed substitution hints:    S( z, w)    F( w)

Proof of Theorem eff1olem
StepHypRef Expression
1 cnvimass 5164 . . . 4  |-  ( `' Im " D ) 
C_  dom  Im
2 eff1olem.2 . . . 4  |-  S  =  ( `' Im " D )
3 imf 11845 . . . . . 6  |-  Im : CC
--> RR
43fdmi 5536 . . . . 5  |-  dom  Im  =  CC
54eqcomi 2391 . . . 4  |-  CC  =  dom  Im
61, 2, 53sstr4i 3330 . . 3  |-  S  C_  CC
7 eff2 12627 . . . . . . 7  |-  exp : CC
--> ( CC  \  {
0 } )
87a1i 11 . . . . . 6  |-  ( S 
C_  CC  ->  exp : CC
--> ( CC  \  {
0 } ) )
98feqmptd 5718 . . . . 5  |-  ( S 
C_  CC  ->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
109reseq1d 5085 . . . 4  |-  ( S 
C_  CC  ->  ( exp  |`  S )  =  ( ( y  e.  CC  |->  ( exp `  y ) )  |`  S )
)
11 resmpt 5131 . . . 4  |-  ( S 
C_  CC  ->  ( ( y  e.  CC  |->  ( exp `  y ) )  |`  S )  =  ( y  e.  S  |->  ( exp `  y
) ) )
1210, 11eqtrd 2419 . . 3  |-  ( S 
C_  CC  ->  ( exp  |`  S )  =  ( y  e.  S  |->  ( exp `  y ) ) )
136, 12ax-mp 8 . 2  |-  ( exp  |`  S )  =  ( y  e.  S  |->  ( exp `  y ) )
146sseli 3287 . . . 4  |-  ( y  e.  S  ->  y  e.  CC )
157ffvelrni 5808 . . . 4  |-  ( y  e.  CC  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
1614, 15syl 16 . . 3  |-  ( y  e.  S  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
1716adantl 453 . 2  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  e.  ( CC  \  {
0 } ) )
18 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  ( CC  \  { 0 } ) )
19 eldifsn 3870 . . . . . . . . . 10  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
2018, 19sylib 189 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
2120simpld 446 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  CC )
2220simprd 450 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =/=  0 )
2321, 22absrpcld 12177 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  RR+ )
24 reeff1o 20230 . . . . . . . . 9  |-  ( exp  |`  RR ) : RR -1-1-onto-> RR+
25 f1ocnv 5627 . . . . . . . . 9  |-  ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  ->  `' ( exp  |`  RR ) :
RR+
-1-1-onto-> RR )
26 f1of 5614 . . . . . . . . 9  |-  ( `' ( exp  |`  RR ) : RR+
-1-1-onto-> RR  ->  `' ( exp  |`  RR ) : RR+ --> RR )
2724, 25, 26mp2b 10 . . . . . . . 8  |-  `' ( exp  |`  RR ) : RR+ --> RR
2827ffvelrni 5808 . . . . . . 7  |-  ( ( abs `  x )  e.  RR+  ->  ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  e.  RR )
2923, 28syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  RR )
3029recnd 9047 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  CC )
31 ax-icn 8982 . . . . . 6  |-  _i  e.  CC
32 eff1olem.3 . . . . . . . . 9  |-  ( ph  ->  D  C_  RR )
3332adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  D  C_  RR )
34 eff1olem.1 . . . . . . . . . . . 12  |-  F  =  ( w  e.  D  |->  ( exp `  (
_i  x.  w )
) )
35 eqid 2387 . . . . . . . . . . . 12  |-  ( `' abs " { 1 } )  =  ( `' abs " { 1 } )
36 eff1olem.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D ) )  -> 
( abs `  (
x  -  y ) )  <  ( 2  x.  pi ) )
37 eff1olem.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  RR )  ->  E. y  e.  D  ( (
z  -  y )  /  ( 2  x.  pi ) )  e.  ZZ )
38 eqid 2387 . . . . . . . . . . . 12  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  =  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
3934, 35, 32, 36, 37, 38efif1olem4 20314 . . . . . . . . . . 11  |-  ( ph  ->  F : D -1-1-onto-> ( `' abs " { 1 } ) )
40 f1ocnv 5627 . . . . . . . . . . 11  |-  ( F : D -1-1-onto-> ( `' abs " {
1 } )  ->  `' F : ( `' abs " { 1 } ) -1-1-onto-> D )
41 f1of 5614 . . . . . . . . . . 11  |-  ( `' F : ( `' abs " { 1 } ) -1-1-onto-> D  ->  `' F : ( `' abs " { 1 } ) --> D )
4239, 40, 413syl 19 . . . . . . . . . 10  |-  ( ph  ->  `' F : ( `' abs " { 1 } ) --> D )
4342adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  `' F : ( `' abs " { 1 } ) --> D )
4421abscld 12165 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  RR )
4544recnd 9047 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  e.  CC )
4621, 22absne0d 12176 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  x
)  =/=  0 )
4721, 45, 46divcld 9722 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  /  ( abs `  x ) )  e.  CC )
4821, 45, 46absdivd 12184 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
x  /  ( abs `  x ) ) )  =  ( ( abs `  x )  /  ( abs `  ( abs `  x
) ) ) )
49 absidm 12054 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( abs `  ( abs `  x
) )  =  ( abs `  x ) )
5021, 49syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  ( abs `  x ) )  =  ( abs `  x
) )
5150oveq2d 6036 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  /  ( abs `  ( abs `  x
) ) )  =  ( ( abs `  x
)  /  ( abs `  x ) ) )
5245, 46dividd 9720 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  /  ( abs `  x ) )  =  1 )
5348, 51, 523eqtrd 2423 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( abs `  (
x  /  ( abs `  x ) ) )  =  1 )
54 absf 12068 . . . . . . . . . . 11  |-  abs : CC
--> RR
55 ffn 5531 . . . . . . . . . . 11  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
56 fniniseg 5790 . . . . . . . . . . 11  |-  ( abs 
Fn  CC  ->  ( ( x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } )  <->  ( (
x  /  ( abs `  x ) )  e.  CC  /\  ( abs `  ( x  /  ( abs `  x ) ) )  =  1 ) ) )
5754, 55, 56mp2b 10 . . . . . . . . . 10  |-  ( ( x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } )  <->  ( (
x  /  ( abs `  x ) )  e.  CC  /\  ( abs `  ( x  /  ( abs `  x ) ) )  =  1 ) )
5847, 53, 57sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x  /  ( abs `  x ) )  e.  ( `' abs " { 1 } ) )
5943, 58ffvelrnd 5810 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  D )
6033, 59sseldd 3292 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  RR )
6160recnd 9047 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( `' F `  ( x  /  ( abs `  x ) ) )  e.  CC )
62 mulcl 9007 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( `' F `  ( x  /  ( abs `  x
) ) )  e.  CC )  ->  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )
6331, 61, 62sylancr 645 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )
6430, 63addcld 9040 . . . 4  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC )
6529, 60crimd 11964 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( Im `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( `' F `  ( x  /  ( abs `  x
) ) ) )
6665, 59eqeltrd 2461 . . . 4  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( Im `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
)
67 ffn 5531 . . . . 5  |-  ( Im : CC --> RR  ->  Im  Fn  CC )
68 elpreima 5789 . . . . 5  |-  ( Im  Fn  CC  ->  (
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D )  <-> 
( ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC  /\  ( Im `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
) ) )
693, 67, 68mp2b 10 . . . 4  |-  ( ( ( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D )  <-> 
( ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  CC  /\  ( Im `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  e.  D
) )
7064, 66, 69sylanbrc 646 . . 3  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  ( `' Im " D ) )
7170, 2syl6eleqr 2478 . 2  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  S )
72 efadd 12623 . . . . . . 7  |-  ( ( ( `' ( exp  |`  RR ) `  ( abs `  x ) )  e.  CC  /\  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) )  e.  CC )  -> 
( exp `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
7330, 63, 72syl2anc 643 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  (
( `' ( exp  |`  RR ) `  ( abs `  x ) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
74 fvres 5685 . . . . . . . . 9  |-  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  e.  RR  ->  ( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) ) )
7529, 74syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) ) )
76 f1ocnvfv2 5954 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  /\  ( abs `  x )  e.  RR+ )  ->  ( ( exp  |`  RR ) `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  =  ( abs `  x
) )
7724, 23, 76sylancr 645 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp  |`  RR ) `
 ( `' ( exp  |`  RR ) `  ( abs `  x
) ) )  =  ( abs `  x
) )
7875, 77eqtr3d 2421 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  =  ( abs `  x
) )
79 oveq2 6028 . . . . . . . . . . 11  |-  ( z  =  ( `' F `  ( x  /  ( abs `  x ) ) )  ->  ( _i  x.  z )  =  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )
8079fveq2d 5672 . . . . . . . . . 10  |-  ( z  =  ( `' F `  ( x  /  ( abs `  x ) ) )  ->  ( exp `  ( _i  x.  z
) )  =  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) ) ) )
81 oveq2 6028 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
_i  x.  w )  =  ( _i  x.  z ) )
8281fveq2d 5672 . . . . . . . . . . . 12  |-  ( w  =  z  ->  ( exp `  ( _i  x.  w ) )  =  ( exp `  (
_i  x.  z )
) )
8382cbvmptv 4241 . . . . . . . . . . 11  |-  ( w  e.  D  |->  ( exp `  ( _i  x.  w
) ) )  =  ( z  e.  D  |->  ( exp `  (
_i  x.  z )
) )
8434, 83eqtri 2407 . . . . . . . . . 10  |-  F  =  ( z  e.  D  |->  ( exp `  (
_i  x.  z )
) )
85 fvex 5682 . . . . . . . . . 10  |-  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  e.  _V
8680, 84, 85fvmpt 5745 . . . . . . . . 9  |-  ( ( `' F `  ( x  /  ( abs `  x
) ) )  e.  D  ->  ( F `  ( `' F `  ( x  /  ( abs `  x ) ) ) )  =  ( exp `  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) ) ) )
8759, 86syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )
8839adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  F : D -1-1-onto-> ( `' abs " {
1 } ) )
89 f1ocnvfv2 5954 . . . . . . . . 9  |-  ( ( F : D -1-1-onto-> ( `' abs " { 1 } )  /\  (
x  /  ( abs `  x ) )  e.  ( `' abs " {
1 } ) )  ->  ( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( x  / 
( abs `  x
) ) )
9088, 58, 89syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( F `  ( `' F `  ( x  /  ( abs `  x
) ) ) )  =  ( x  / 
( abs `  x
) ) )
9187, 90eqtr3d 2421 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  =  ( x  /  ( abs `  x
) ) )
9278, 91oveq12d 6038 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( exp `  ( `' ( exp  |`  RR ) `
 ( abs `  x
) ) )  x.  ( exp `  (
_i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) )  =  ( ( abs `  x
)  x.  ( x  /  ( abs `  x
) ) ) )
9321, 45, 46divcan2d 9724 . . . . . 6  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( abs `  x
)  x.  ( x  /  ( abs `  x
) ) )  =  x )
9473, 92, 933eqtrrd 2424 . . . . 5  |-  ( (
ph  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
9594adantrl 697 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
96 fveq2 5668 . . . . 5  |-  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  ( exp `  y )  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
9796eqeq2d 2398 . . . 4  |-  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  ( x  =  ( exp `  y
)  <->  x  =  ( exp `  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) ) )
9895, 97syl5ibrcom 214 . . 3  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  ->  x  =  ( exp `  y ) ) )
9914adantl 453 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  y  e.  CC )
10099replimd 11929 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  y  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
101 absef 12725 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( abs `  ( exp `  y
) )  =  ( exp `  ( Re
`  y ) ) )
10299, 101syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( exp `  y
) )  =  ( exp `  ( Re
`  y ) ) )
10399recld 11926 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
Re `  y )  e.  RR )
104 fvres 5685 . . . . . . . . . . 11  |-  ( ( Re `  y )  e.  RR  ->  (
( exp  |`  RR ) `
 ( Re `  y ) )  =  ( exp `  (
Re `  y )
) )
105103, 104syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp  |`  RR ) `
 ( Re `  y ) )  =  ( exp `  (
Re `  y )
) )
106102, 105eqtr4d 2422 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( abs `  ( exp `  y
) )  =  ( ( exp  |`  RR ) `
 ( Re `  y ) ) )
107106fveq2d 5672 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  =  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) ) )
108 f1ocnvfv1 5953 . . . . . . . . 9  |-  ( ( ( exp  |`  RR ) : RR -1-1-onto-> RR+  /\  ( Re
`  y )  e.  RR )  ->  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) )  =  ( Re `  y ) )
10924, 103, 108sylancr 645 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( ( exp  |`  RR ) `  (
Re `  y )
) )  =  ( Re `  y ) )
110107, 109eqtrd 2419 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  =  ( Re
`  y ) )
11199imcld 11927 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  RR )
112111recnd 9047 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  CC )
113 mulcl 9007 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( Im `  y )  e.  CC )  -> 
( _i  x.  (
Im `  y )
)  e.  CC )
11431, 112, 113sylancr 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
_i  x.  ( Im `  y ) )  e.  CC )
115 efcl 12612 . . . . . . . . . . . . 13  |-  ( ( _i  x.  ( Im
`  y ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Im `  y ) ) )  e.  CC )
116114, 115syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( _i  x.  ( Im `  y ) ) )  e.  CC )
117103recnd 9047 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  (
Re `  y )  e.  CC )
118 efcl 12612 . . . . . . . . . . . . 13  |-  ( ( Re `  y )  e.  CC  ->  ( exp `  ( Re `  y ) )  e.  CC )
119117, 118syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( Re `  y ) )  e.  CC )
120 efne0 12625 . . . . . . . . . . . . 13  |-  ( ( Re `  y )  e.  CC  ->  ( exp `  ( Re `  y ) )  =/=  0 )
121117, 120syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( Re `  y ) )  =/=  0 )
122116, 119, 121divcan3d 9727 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) )  / 
( exp `  (
Re `  y )
) )  =  ( exp `  ( _i  x.  ( Im `  y ) ) ) )
123100fveq2d 5672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  =  ( exp `  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) ) ) )
124 efadd 12623 . . . . . . . . . . . . . 14  |-  ( ( ( Re `  y
)  e.  CC  /\  ( _i  x.  (
Im `  y )
)  e.  CC )  ->  ( exp `  (
( Re `  y
)  +  ( _i  x.  ( Im `  y ) ) ) )  =  ( ( exp `  ( Re
`  y ) )  x.  ( exp `  (
_i  x.  ( Im `  y ) ) ) ) )
125117, 114, 124syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )  =  ( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) ) )
126123, 125eqtrd 2419 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  ( exp `  y )  =  ( ( exp `  (
Re `  y )
)  x.  ( exp `  ( _i  x.  (
Im `  y )
) ) ) )
127126, 102oveq12d 6038 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  y
)  /  ( abs `  ( exp `  y
) ) )  =  ( ( ( exp `  ( Re `  y
) )  x.  ( exp `  ( _i  x.  ( Im `  y ) ) ) )  / 
( exp `  (
Re `  y )
) ) )
128 elpreima 5789 . . . . . . . . . . . . . . . 16  |-  ( Im  Fn  CC  ->  (
y  e.  ( `' Im " D )  <-> 
( y  e.  CC  /\  ( Im `  y
)  e.  D ) ) )
1293, 67, 128mp2b 10 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' Im " D )  <->  ( y  e.  CC  /\  ( Im
`  y )  e.  D ) )
130129simprbi 451 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' Im " D )  ->  (
Im `  y )  e.  D )
131130, 2eleq2s 2479 . . . . . . . . . . . . 13  |-  ( y  e.  S  ->  (
Im `  y )  e.  D )
132131adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  S )  ->  (
Im `  y )  e.  D )
133 oveq2 6028 . . . . . . . . . . . . . 14  |-  ( w  =  ( Im `  y )  ->  (
_i  x.  w )  =  ( _i  x.  ( Im `  y ) ) )
134133fveq2d 5672 . . . . . . . . . . . . 13  |-  ( w  =  ( Im `  y )  ->  ( exp `  ( _i  x.  w ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
135 fvex 5682 . . . . . . . . . . . . 13  |-  ( exp `  ( _i  x.  (
Im `  y )
) )  e.  _V
136134, 34, 135fvmpt 5745 . . . . . . . . . . . 12  |-  ( ( Im `  y )  e.  D  ->  ( F `  ( Im `  y ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
137132, 136syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  ( F `  ( Im `  y ) )  =  ( exp `  (
_i  x.  ( Im `  y ) ) ) )
138122, 127, 1373eqtr4d 2429 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  S )  ->  (
( exp `  y
)  /  ( abs `  ( exp `  y
) ) )  =  ( F `  (
Im `  y )
) )
139138fveq2d 5672 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) )  =  ( `' F `  ( F `
 ( Im `  y ) ) ) )
140 f1ocnvfv1 5953 . . . . . . . . . 10  |-  ( ( F : D -1-1-onto-> ( `' abs " { 1 } )  /\  (
Im `  y )  e.  D )  ->  ( `' F `  ( F `
 ( Im `  y ) ) )  =  ( Im `  y ) )
14139, 131, 140syl2an 464 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( F `
 ( Im `  y ) ) )  =  ( Im `  y ) )
142139, 141eqtrd 2419 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) )  =  ( Im `  y ) )
143142oveq2d 6036 . . . . . . 7  |-  ( (
ph  /\  y  e.  S )  ->  (
_i  x.  ( `' F `  ( ( exp `  y )  / 
( abs `  ( exp `  y ) ) ) ) )  =  ( _i  x.  (
Im `  y )
) )
144110, 143oveq12d 6038 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  (
( `' ( exp  |`  RR ) `  ( abs `  ( exp `  y
) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) )  =  ( ( Re
`  y )  +  ( _i  x.  (
Im `  y )
) ) )
145100, 144eqtr4d 2422 . . . . 5  |-  ( (
ph  /\  y  e.  S )  ->  y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) ) ) )
146 fveq2 5668 . . . . . . . 8  |-  ( x  =  ( exp `  y
)  ->  ( abs `  x )  =  ( abs `  ( exp `  y ) ) )
147146fveq2d 5672 . . . . . . 7  |-  ( x  =  ( exp `  y
)  ->  ( `' ( exp  |`  RR ) `  ( abs `  x
) )  =  ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) ) )
148 id 20 . . . . . . . . . 10  |-  ( x  =  ( exp `  y
)  ->  x  =  ( exp `  y ) )
149148, 146oveq12d 6038 . . . . . . . . 9  |-  ( x  =  ( exp `  y
)  ->  ( x  /  ( abs `  x
) )  =  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) )
150149fveq2d 5672 . . . . . . . 8  |-  ( x  =  ( exp `  y
)  ->  ( `' F `  ( x  /  ( abs `  x
) ) )  =  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) )
151150oveq2d 6036 . . . . . . 7  |-  ( x  =  ( exp `  y
)  ->  ( _i  x.  ( `' F `  ( x  /  ( abs `  x ) ) ) )  =  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) )
152147, 151oveq12d 6038 . . . . . 6  |-  ( x  =  ( exp `  y
)  ->  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  ( exp `  y ) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y
)  /  ( abs `  ( exp `  y
) ) ) ) ) ) )
153152eqeq2d 2398 . . . . 5  |-  ( x  =  ( exp `  y
)  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  <->  y  =  ( ( `' ( exp  |`  RR ) `  ( abs `  ( exp `  y
) ) )  +  ( _i  x.  ( `' F `  ( ( exp `  y )  /  ( abs `  ( exp `  y ) ) ) ) ) ) ) )
154145, 153syl5ibrcom 214 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  (
x  =  ( exp `  y )  ->  y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
155154adantrr 698 . . 3  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( x  =  ( exp `  y
)  ->  y  =  ( ( `' ( exp  |`  RR ) `  ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) ) ) )
15698, 155impbid 184 . 2  |-  ( (
ph  /\  ( y  e.  S  /\  x  e.  ( CC  \  {
0 } ) ) )  ->  ( y  =  ( ( `' ( exp  |`  RR ) `
 ( abs `  x
) )  +  ( _i  x.  ( `' F `  ( x  /  ( abs `  x
) ) ) ) )  <->  x  =  ( exp `  y ) ) )
15713, 17, 71, 156f1o2d 6235 1  |-  ( ph  ->  ( exp  |`  S ) : S -1-1-onto-> ( CC  \  {
0 } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   E.wrex 2650    \ cdif 3260    C_ wss 3263   {csn 3757   class class class wbr 4153    e. cmpt 4207   `'ccnv 4817   dom cdm 4818    |` cres 4820   "cima 4821    Fn wfn 5389   -->wf 5390   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924   _ici 8925    + caddc 8926    x. cmul 8928    < clt 9053    - cmin 9223   -ucneg 9224    / cdiv 9609   2c2 9981   ZZcz 10214   RR+crp 10544   [,]cicc 10851   Recre 11829   Imcim 11830   abscabs 11966   expce 12591   sincsin 12593   picpi 12596
This theorem is referenced by:  eff1o  20318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621
  Copyright terms: Public domain W3C validator