MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl2 Unicode version

Theorem efgcpbl2 15066
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgcpbl2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  .~  ( X concat  Y ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)    X( x, y, z, w, v, t, k, m, n)    Y( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgcpbl2
StepHypRef Expression
1 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
31, 2efger 15027 . . 3  |-  .~  Er  W
43a1i 10 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  .~  Er  W )
5 simpl 443 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  .~  X )
64, 5ercl 6671 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  e.  W )
7 wrd0 11418 . . . . 5  |-  (/)  e. Word  (
I  X.  2o )
81efgrcl 15024 . . . . . . 7  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
96, 8syl 15 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
109simprd 449 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  W  = Word  ( I  X.  2o ) )
117, 10syl5eleqr 2370 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  (/) 
e.  W )
12 simpr 447 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  .~  Y )
13 efgval2.m . . . . 5  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
14 efgval2.t . . . . 5  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
15 efgred.d . . . . 5  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
16 efgred.s . . . . 5  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
171, 2, 13, 14, 15, 16efgcpbl 15065 . . . 4  |-  ( ( A  e.  W  /\  (/) 
e.  W  /\  B  .~  Y )  ->  (
( A concat  B ) concat  (/) )  .~  ( ( A concat  Y ) concat  (/) ) )
186, 11, 12, 17syl3anc 1182 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A concat  B
) concat  (/) )  .~  (
( A concat  Y ) concat  (/) ) )
196, 10eleqtrd 2359 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  e. Word  ( I  X.  2o ) )
204, 12ercl 6671 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  e.  W )
2120, 10eleqtrd 2359 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  e. Word  ( I  X.  2o ) )
22 ccatcl 11429 . . . . 5  |-  ( ( A  e. Word  ( I  X.  2o )  /\  B  e. Word  ( I  X.  2o ) )  -> 
( A concat  B )  e. Word  ( I  X.  2o ) )
2319, 21, 22syl2anc 642 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  e. Word  ( I  X.  2o ) )
24 ccatrid 11435 . . . 4  |-  ( ( A concat  B )  e. Word 
( I  X.  2o )  ->  ( ( A concat  B ) concat  (/) )  =  ( A concat  B ) )
2523, 24syl 15 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A concat  B
) concat  (/) )  =  ( A concat  B ) )
264, 12ercl2 6673 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  Y  e.  W )
2726, 10eleqtrd 2359 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  Y  e. Word  ( I  X.  2o ) )
28 ccatcl 11429 . . . . 5  |-  ( ( A  e. Word  ( I  X.  2o )  /\  Y  e. Word  ( I  X.  2o ) )  -> 
( A concat  Y )  e. Word  ( I  X.  2o ) )
2919, 27, 28syl2anc 642 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  Y )  e. Word  ( I  X.  2o ) )
30 ccatrid 11435 . . . 4  |-  ( ( A concat  Y )  e. Word 
( I  X.  2o )  ->  ( ( A concat  Y ) concat  (/) )  =  ( A concat  Y ) )
3129, 30syl 15 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A concat  Y
) concat  (/) )  =  ( A concat  Y ) )
3218, 25, 313brtr3d 4052 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  .~  ( A concat  Y ) )
331, 2, 13, 14, 15, 16efgcpbl 15065 . . . 4  |-  ( (
(/)  e.  W  /\  Y  e.  W  /\  A  .~  X )  -> 
( ( (/) concat  A ) concat  Y )  .~  (
( (/) concat  X ) concat  Y ) )
3411, 26, 5, 33syl3anc 1182 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) concat  A ) concat  Y )  .~  (
( (/) concat  X ) concat  Y ) )
35 ccatlid 11434 . . . . 5  |-  ( A  e. Word  ( I  X.  2o )  ->  ( (/) concat  A )  =  A )
3619, 35syl 15 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( (/) concat  A )  =  A )
3736oveq1d 5873 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) concat  A ) concat  Y )  =  ( A concat  Y ) )
384, 5ercl2 6673 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  X  e.  W )
3938, 10eleqtrd 2359 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  X  e. Word  ( I  X.  2o ) )
40 ccatlid 11434 . . . . 5  |-  ( X  e. Word  ( I  X.  2o )  ->  ( (/) concat  X )  =  X )
4139, 40syl 15 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( (/) concat  X )  =  X )
4241oveq1d 5873 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) concat  X ) concat  Y )  =  ( X concat  Y ) )
4334, 37, 423brtr3d 4052 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  Y )  .~  ( X concat  Y ) )
444, 32, 43ertrd 6676 1  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  .~  ( X concat  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    \ cdif 3149   (/)c0 3455   {csn 3640   <.cop 3643   <.cotp 3644   U_ciun 3905   class class class wbr 4023    e. cmpt 4077    _I cid 4304    X. cxp 4687   ran crn 4690   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1oc1o 6472   2oc2o 6473    Er wer 6657   0cc0 8737   1c1 8738    - cmin 9037   ...cfz 10782  ..^cfzo 10870   #chash 11337  Word cword 11403   concat cconcat 11404   splice csplice 11407   <"cs2 11491   ~FG cefg 15015
This theorem is referenced by:  frgpcpbl  15068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-s2 11498  df-efg 15018
  Copyright terms: Public domain W3C validator