MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbl2 Unicode version

Theorem efgcpbl2 15082
Description: Two extension sequences have related endpoints iff they have the same base. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgcpbl2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  .~  ( X concat  Y ) )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    M( y, z, k)    X( x, y, z, w, v, t, k, m, n)    Y( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgcpbl2
StepHypRef Expression
1 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
31, 2efger 15043 . . 3  |-  .~  Er  W
43a1i 10 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  .~  Er  W )
5 simpl 443 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  .~  X )
64, 5ercl 6687 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  e.  W )
7 wrd0 11434 . . . . 5  |-  (/)  e. Word  (
I  X.  2o )
81efgrcl 15040 . . . . . . 7  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
96, 8syl 15 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
109simprd 449 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  W  = Word  ( I  X.  2o ) )
117, 10syl5eleqr 2383 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  (/) 
e.  W )
12 simpr 447 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  .~  Y )
13 efgval2.m . . . . 5  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
14 efgval2.t . . . . 5  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
15 efgred.d . . . . 5  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
16 efgred.s . . . . 5  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
171, 2, 13, 14, 15, 16efgcpbl 15081 . . . 4  |-  ( ( A  e.  W  /\  (/) 
e.  W  /\  B  .~  Y )  ->  (
( A concat  B ) concat  (/) )  .~  ( ( A concat  Y ) concat  (/) ) )
186, 11, 12, 17syl3anc 1182 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A concat  B
) concat  (/) )  .~  (
( A concat  Y ) concat  (/) ) )
196, 10eleqtrd 2372 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  A  e. Word  ( I  X.  2o ) )
204, 12ercl 6687 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  e.  W )
2120, 10eleqtrd 2372 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  B  e. Word  ( I  X.  2o ) )
22 ccatcl 11445 . . . . 5  |-  ( ( A  e. Word  ( I  X.  2o )  /\  B  e. Word  ( I  X.  2o ) )  -> 
( A concat  B )  e. Word  ( I  X.  2o ) )
2319, 21, 22syl2anc 642 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  e. Word  ( I  X.  2o ) )
24 ccatrid 11451 . . . 4  |-  ( ( A concat  B )  e. Word 
( I  X.  2o )  ->  ( ( A concat  B ) concat  (/) )  =  ( A concat  B ) )
2523, 24syl 15 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A concat  B
) concat  (/) )  =  ( A concat  B ) )
264, 12ercl2 6689 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  Y  e.  W )
2726, 10eleqtrd 2372 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  Y  e. Word  ( I  X.  2o ) )
28 ccatcl 11445 . . . . 5  |-  ( ( A  e. Word  ( I  X.  2o )  /\  Y  e. Word  ( I  X.  2o ) )  -> 
( A concat  Y )  e. Word  ( I  X.  2o ) )
2919, 27, 28syl2anc 642 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  Y )  e. Word  ( I  X.  2o ) )
30 ccatrid 11451 . . . 4  |-  ( ( A concat  Y )  e. Word 
( I  X.  2o )  ->  ( ( A concat  Y ) concat  (/) )  =  ( A concat  Y ) )
3129, 30syl 15 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( A concat  Y
) concat  (/) )  =  ( A concat  Y ) )
3218, 25, 313brtr3d 4068 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  .~  ( A concat  Y ) )
331, 2, 13, 14, 15, 16efgcpbl 15081 . . . 4  |-  ( (
(/)  e.  W  /\  Y  e.  W  /\  A  .~  X )  -> 
( ( (/) concat  A ) concat  Y )  .~  (
( (/) concat  X ) concat  Y ) )
3411, 26, 5, 33syl3anc 1182 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) concat  A ) concat  Y )  .~  (
( (/) concat  X ) concat  Y ) )
35 ccatlid 11450 . . . . 5  |-  ( A  e. Word  ( I  X.  2o )  ->  ( (/) concat  A )  =  A )
3619, 35syl 15 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( (/) concat  A )  =  A )
3736oveq1d 5889 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) concat  A ) concat  Y )  =  ( A concat  Y ) )
384, 5ercl2 6689 . . . . . 6  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  X  e.  W )
3938, 10eleqtrd 2372 . . . . 5  |-  ( ( A  .~  X  /\  B  .~  Y )  ->  X  e. Word  ( I  X.  2o ) )
40 ccatlid 11450 . . . . 5  |-  ( X  e. Word  ( I  X.  2o )  ->  ( (/) concat  X )  =  X )
4139, 40syl 15 . . . 4  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( (/) concat  X )  =  X )
4241oveq1d 5889 . . 3  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( ( (/) concat  X ) concat  Y )  =  ( X concat  Y ) )
4334, 37, 423brtr3d 4068 . 2  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  Y )  .~  ( X concat  Y ) )
444, 32, 43ertrd 6692 1  |-  ( ( A  .~  X  /\  B  .~  Y )  -> 
( A concat  B )  .~  ( X concat  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    \ cdif 3162   (/)c0 3468   {csn 3653   <.cop 3656   <.cotp 3657   U_ciun 3921   class class class wbr 4039    e. cmpt 4093    _I cid 4320    X. cxp 4703   ran crn 4706   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1oc1o 6488   2oc2o 6489    Er wer 6673   0cc0 8753   1c1 8754    - cmin 9053   ...cfz 10798  ..^cfzo 10886   #chash 11353  Word cword 11419   concat cconcat 11420   splice csplice 11423   <"cs2 11507   ~FG cefg 15031
This theorem is referenced by:  frgpcpbl  15084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-ec 6678  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-substr 11428  df-splice 11429  df-s2 11514  df-efg 15034
  Copyright terms: Public domain W3C validator