MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgcpbllemb Structured version   Unicode version

Theorem efgcpbllemb 15379
Description: Lemma for efgrelex 15375. Show that  L is an equivalence relation containing all direct extensions of a word, so is closed under  .~. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgcpbllem.1  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
Assertion
Ref Expression
efgcpbllemb  |-  ( ( A  e.  W  /\  B  e.  W )  ->  .~  C_  L )
Distinct variable groups:    i, j, A    y, z    t, n, v, w, y, z   
i, m, n, t, v, w, x, M, j    i, k, T, j, m, t, x   
y, i, z, W, j    k, n, v, w, y, z, W, m, t, x    .~ , i,
j, m, t, x, y, z    B, i, j    S, i, j    i, I, j, m, n, t, v, w, x, y, z    D, i, j, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    I( k)    L( x, y, z, w, v, t, i, j, k, m, n)    M( y, z, k)

Proof of Theorem efgcpbllemb
Dummy variables  a 
b  c  f  g  h  r  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . 3  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . 3  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . 3  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . 3  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
51, 2, 3, 4efgval2 15348 . 2  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f ) 
C_  [ f ] r ) }
6 efgcpbllem.1 . . . . . . 7  |-  L  =  { <. i ,  j
>.  |  ( {
i ,  j } 
C_  W  /\  (
( A concat  i ) concat  B )  .~  ( ( A concat  j ) concat  B
) ) }
76relopabi 4992 . . . . . 6  |-  Rel  L
87a1i 11 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  W )  ->  Rel  L )
9 efgred.d . . . . . . . . 9  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
10 efgred.s . . . . . . . . 9  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
111, 2, 3, 4, 9, 10, 6efgcpbllema 15378 . . . . . . . 8  |-  ( f L g  <->  ( f  e.  W  /\  g  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  g ) concat  B
) ) )
1211simp2bi 973 . . . . . . 7  |-  ( f L g  ->  g  e.  W )
1312adantl 453 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  g  e.  W )
1411simp1bi 972 . . . . . . 7  |-  ( f L g  ->  f  e.  W )
1514adantl 453 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  f  e.  W )
161, 2efger 15342 . . . . . . . 8  |-  .~  Er  W
1716a1i 11 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  .~  Er  W )
1811simp3bi 974 . . . . . . . 8  |-  ( f L g  ->  (
( A concat  f ) concat  B )  .~  ( ( A concat  g ) concat  B
) )
1918adantl 453 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  (
( A concat  f ) concat  B )  .~  ( ( A concat  g ) concat  B
) )
2017, 19ersym 6909 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  (
( A concat  g ) concat  B )  .~  ( ( A concat  f ) concat  B
) )
211, 2, 3, 4, 9, 10, 6efgcpbllema 15378 . . . . . 6  |-  ( g L f  <->  ( g  e.  W  /\  f  e.  W  /\  (
( A concat  g ) concat  B )  .~  ( ( A concat  f ) concat  B
) ) )
2213, 15, 20, 21syl3anbrc 1138 . . . . 5  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f L
g )  ->  g L f )
2314ad2antrl 709 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  f  e.  W
)
241, 2, 3, 4, 9, 10, 6efgcpbllema 15378 . . . . . . . 8  |-  ( g L h  <->  ( g  e.  W  /\  h  e.  W  /\  (
( A concat  g ) concat  B )  .~  ( ( A concat  h ) concat  B
) ) )
2524simp2bi 973 . . . . . . 7  |-  ( g L h  ->  h  e.  W )
2625ad2antll 710 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  h  e.  W
)
2716a1i 11 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  .~  Er  W
)
2818ad2antrl 709 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  ( ( A concat 
f ) concat  B )  .~  ( ( A concat  g
) concat  B ) )
2924simp3bi 974 . . . . . . . 8  |-  ( g L h  ->  (
( A concat  g ) concat  B )  .~  ( ( A concat  h ) concat  B
) )
3029ad2antll 710 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  ( ( A concat 
g ) concat  B )  .~  ( ( A concat  h
) concat  B ) )
3127, 28, 30ertrd 6913 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  ( ( A concat 
f ) concat  B )  .~  ( ( A concat  h
) concat  B ) )
321, 2, 3, 4, 9, 10, 6efgcpbllema 15378 . . . . . 6  |-  ( f L h  <->  ( f  e.  W  /\  h  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  h ) concat  B
) ) )
3323, 26, 31, 32syl3anbrc 1138 . . . . 5  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  ( f L g  /\  g L h ) )  ->  f L h )
3416a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  .~  Er  W )
35 fviss 5776 . . . . . . . . . . . . . 14  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
361, 35eqsstri 3370 . . . . . . . . . . . . 13  |-  W  C_ Word  ( I  X.  2o )
37 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  A  e.  W )
3836, 37sseldi 3338 . . . . . . . . . . . 12  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  A  e. Word  ( I  X.  2o ) )
39 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  f  e.  W )
4036, 39sseldi 3338 . . . . . . . . . . . 12  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  f  e. Word  ( I  X.  2o ) )
41 ccatcl 11735 . . . . . . . . . . . 12  |-  ( ( A  e. Word  ( I  X.  2o )  /\  f  e. Word  ( I  X.  2o ) )  -> 
( A concat  f )  e. Word  ( I  X.  2o ) )
4238, 40, 41syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ( A concat  f )  e. Word  (
I  X.  2o ) )
43 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  B  e.  W )
4436, 43sseldi 3338 . . . . . . . . . . 11  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  B  e. Word  ( I  X.  2o ) )
45 ccatcl 11735 . . . . . . . . . . 11  |-  ( ( ( A concat  f )  e. Word  ( I  X.  2o )  /\  B  e. Word 
( I  X.  2o ) )  ->  (
( A concat  f ) concat  B )  e. Word  ( I  X.  2o ) )
4642, 44, 45syl2anc 643 . . . . . . . . . 10  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
( A concat  f ) concat  B )  e. Word  ( I  X.  2o ) )
471efgrcl 15339 . . . . . . . . . . . 12  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
4847simprd 450 . . . . . . . . . . 11  |-  ( A  e.  W  ->  W  = Word  ( I  X.  2o ) )
4948ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  W  = Word  ( I  X.  2o ) )
5046, 49eleqtrrd 2512 . . . . . . . . 9  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
( A concat  f ) concat  B )  e.  W )
5134, 50erref 6917 . . . . . . . 8  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
( A concat  f ) concat  B )  .~  ( ( A concat  f ) concat  B
) )
5251ex 424 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( f  e.  W  ->  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) ) )
5352pm4.71d 616 . . . . . 6  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( f  e.  W  <->  ( f  e.  W  /\  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) ) ) )
541, 2, 3, 4, 9, 10, 6efgcpbllema 15378 . . . . . . 7  |-  ( f L f  <->  ( f  e.  W  /\  f  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  f ) concat  B
) ) )
55 df-3an 938 . . . . . . 7  |-  ( ( f  e.  W  /\  f  e.  W  /\  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) )  <->  ( (
f  e.  W  /\  f  e.  W )  /\  ( ( A concat  f
) concat  B )  .~  (
( A concat  f ) concat  B ) ) )
56 anidm 626 . . . . . . . 8  |-  ( ( f  e.  W  /\  f  e.  W )  <->  f  e.  W )
5756anbi1i 677 . . . . . . 7  |-  ( ( ( f  e.  W  /\  f  e.  W
)  /\  ( ( A concat  f ) concat  B )  .~  ( ( A concat 
f ) concat  B )
)  <->  ( f  e.  W  /\  ( ( A concat  f ) concat  B
)  .~  ( ( A concat  f ) concat  B ) ) )
5854, 55, 573bitri 263 . . . . . 6  |-  ( f L f  <->  ( f  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  f ) concat  B
) ) )
5953, 58syl6bbr 255 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( f  e.  W  <->  f L f ) )
608, 22, 33, 59iserd 6923 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  L  Er  W )
611, 2, 3, 4efgtf 15346 . . . . . . . . . 10  |-  ( f  e.  W  ->  (
( T `  f
)  =  ( a  e.  ( 0 ... ( # `  f
) ) ,  b  e.  ( I  X.  2o )  |->  ( f splice  <. a ,  a , 
<" b ( M `
 b ) "> >. ) )  /\  ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W ) )
6261simprd 450 . . . . . . . . 9  |-  ( f  e.  W  ->  ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W )
6362adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W )
64 ffn 5583 . . . . . . . 8  |-  ( ( T `  f ) : ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) --> W  ->  ( T `  f )  Fn  ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) ) )
65 ovelrn 6214 . . . . . . . 8  |-  ( ( T `  f )  Fn  ( ( 0 ... ( # `  f
) )  X.  (
I  X.  2o ) )  ->  ( a  e.  ran  ( T `  f )  <->  E. c  e.  ( 0 ... ( # `
 f ) ) E. u  e.  ( I  X.  2o ) a  =  ( c ( T `  f
) u ) ) )
6663, 64, 653syl 19 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
a  e.  ran  ( T `  f )  <->  E. c  e.  ( 0 ... ( # `  f
) ) E. u  e.  ( I  X.  2o ) a  =  ( c ( T `  f ) u ) ) )
67 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
f  e.  W )
6862ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( T `  f
) : ( ( 0 ... ( # `  f ) )  X.  ( I  X.  2o ) ) --> W )
69 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  ( 0 ... ( # `  f
) ) )
70 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  u  e.  ( I  X.  2o ) )
7168, 69, 70fovrnd 6210 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c ( T `
 f ) u )  e.  W )
7250adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  f
) concat  B )  e.  W
)
7337adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  A  e.  W )
7436, 73sseldi 3338 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  A  e. Word  ( I  X.  2o ) )
7540adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
f  e. Word  ( I  X.  2o ) )
76 swrdcl 11758 . . . . . . . . . . . . . . . . 17  |-  ( f  e. Word  ( I  X.  2o )  ->  ( f substr  <. 0 ,  c >.
)  e. Word  ( I  X.  2o ) )
7775, 76syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o ) )
78 ccatcl 11735 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o ) )  ->  ( A concat  ( f substr  <. 0 ,  c
>. ) )  e. Word  (
I  X.  2o ) )
7974, 77, 78syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( f substr  <.
0 ,  c >.
) )  e. Word  (
I  X.  2o ) )
803efgmf 15337 . . . . . . . . . . . . . . . . . 18  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
8180ffvelrni 5861 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( I  X.  2o )  ->  ( M `
 u )  e.  ( I  X.  2o ) )
8281ad2antll 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( M `  u
)  e.  ( I  X.  2o ) )
8370, 82s2cld 11825 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  <" u ( M `
 u ) ">  e. Word  ( I  X.  2o ) )
84 ccatcl 11735 . . . . . . . . . . . . . . 15  |-  ( ( ( A concat  ( f substr  <. 0 ,  c >.
) )  e. Word  (
I  X.  2o )  /\  <" u ( M `  u ) ">  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( f substr  <. 0 ,  c >. )
) concat  <" u ( M `  u ) "> )  e. Word 
( I  X.  2o ) )
8579, 83, 84syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> )  e. Word  ( I  X.  2o ) )
86 swrdcl 11758 . . . . . . . . . . . . . . 15  |-  ( f  e. Word  ( I  X.  2o )  ->  ( f substr  <. c ,  ( # `  f ) >. )  e. Word  ( I  X.  2o ) )
8775, 86syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o ) )
8844adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  B  e. Word  ( I  X.  2o ) )
89 ccatass 11742 . . . . . . . . . . . . . 14  |-  ( ( ( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> )  e. Word  ( I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o )  /\  B  e. Word  (
I  X.  2o ) )  ->  ( (
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
9085, 87, 88, 89syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
91 ccatcl 11735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f substr  <. 0 ,  c >. )  e. Word  ( I  X.  2o )  /\  <" u ( M `  u ) ">  e. Word  (
I  X.  2o ) )  ->  ( (
f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> )  e. Word  ( I  X.  2o ) )
9277, 83, 91syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> )  e. Word  (
I  X.  2o ) )
93 ccatass 11742 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> )  e. Word  (
I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) ) concat  (
f substr  <. c ,  (
# `  f ) >. ) )  =  ( A concat  ( ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) ) )
9474, 92, 87, 93syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
( f substr  <. 0 ,  c >. ) concat  <" u
( M `  u
) "> )
) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( A concat  ( ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) ) )
95 ccatass 11742 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o )  /\  <" u ( M `  u ) ">  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( f substr  <. 0 ,  c >. )
) concat  <" u ( M `  u ) "> )  =  ( A concat  ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> )
) )
9674, 77, 83, 95syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  <" u
( M `  u
) "> )  =  ( A concat  (
( f substr  <. 0 ,  c >. ) concat  <" u
( M `  u
) "> )
) )
9796oveq1d 6088 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( ( A concat  (
( f substr  <. 0 ,  c >. ) concat  <" u
( M `  u
) "> )
) concat  ( f substr  <. c ,  ( # `  f
) >. ) ) )
981, 2, 3, 4efgtval 15347 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  W  /\  c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) )  ->  (
c ( T `  f ) u )  =  ( f splice  <. c ,  c ,  <" u ( M `  u ) "> >.
) )
9967, 69, 70, 98syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c ( T `
 f ) u )  =  ( f splice  <. c ,  c , 
<" u ( M `
 u ) "> >. ) )
100 splval 11772 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  W  /\  ( c  e.  ( 0 ... ( # `  f ) )  /\  c  e.  ( 0 ... ( # `  f
) )  /\  <" u ( M `  u ) ">  e. Word  ( I  X.  2o ) ) )  -> 
( f splice  <. c ,  c ,  <" u
( M `  u
) "> >. )  =  ( ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) )
10167, 69, 69, 83, 100syl13anc 1186 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f splice  <. c ,  c ,  <" u
( M `  u
) "> >. )  =  ( ( ( f substr  <. 0 ,  c
>. ) concat  <" u
( M `  u
) "> ) concat  ( f substr  <. c ,  (
# `  f ) >. ) ) )
10299, 101eqtrd 2467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c ( T `
 f ) u )  =  ( ( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) )
103102oveq2d 6089 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( c
( T `  f
) u ) )  =  ( A concat  (
( ( f substr  <. 0 ,  c >. ) concat  <" u ( M `
 u ) "> ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) ) )
10494, 97, 1033eqtr4rd 2478 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( c
( T `  f
) u ) )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) )
105104oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
c ( T `  f ) u ) ) concat  B )  =  ( ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B ) )
106 lencl 11727 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e. Word  ( I  X.  2o )  ->  ( # `  A )  e.  NN0 )
10774, 106syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  NN0 )
108 nn0uz 10512 . . . . . . . . . . . . . . . . . 18  |-  NN0  =  ( ZZ>= `  0 )
109107, 108syl6eleq 2525 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  ( ZZ>= `  0
) )
110 elfznn0 11075 . . . . . . . . . . . . . . . . . 18  |-  ( c  e.  ( 0 ... ( # `  f
) )  ->  c  e.  NN0 )
111110ad2antrl 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  NN0 )
112 uzaddcl 10525 . . . . . . . . . . . . . . . . 17  |-  ( ( ( # `  A
)  e.  ( ZZ>= ` 
0 )  /\  c  e.  NN0 )  ->  (
( # `  A )  +  c )  e.  ( ZZ>= `  0 )
)
113109, 111, 112syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  ( ZZ>= `  0
) )
11442adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  f )  e. Word  ( I  X.  2o ) )
115 ccatlen 11736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A concat  f )  e. Word  ( I  X.  2o )  /\  B  e. Word 
( I  X.  2o ) )  ->  ( # `
 ( ( A concat 
f ) concat  B )
)  =  ( (
# `  ( A concat  f ) )  +  (
# `  B )
) )
116114, 88, 115syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( ( A concat  f ) concat  B
) )  =  ( ( # `  ( A concat  f ) )  +  ( # `  B
) ) )
117 ccatlen 11736 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e. Word  ( I  X.  2o )  /\  f  e. Word  ( I  X.  2o ) )  -> 
( # `  ( A concat 
f ) )  =  ( ( # `  A
)  +  ( # `  f ) ) )
11874, 75, 117syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( A concat 
f ) )  =  ( ( # `  A
)  +  ( # `  f ) ) )
119 elfzuz3 11048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  ( 0 ... ( # `  f
) )  ->  ( # `
 f )  e.  ( ZZ>= `  c )
)
120119ad2antrl 709 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  ( ZZ>= `  c
) )
121107nn0zd 10365 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  ZZ )
122 eluzadd 10506 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( # `  f
)  e.  ( ZZ>= `  c )  /\  ( # `
 A )  e.  ZZ )  ->  (
( # `  f )  +  ( # `  A
) )  e.  (
ZZ>= `  ( c  +  ( # `  A
) ) ) )
123120, 121, 122syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  f
)  +  ( # `  A ) )  e.  ( ZZ>= `  ( c  +  ( # `  A
) ) ) )
124 lencl 11727 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  e. Word  ( I  X.  2o )  ->  ( # `  f )  e.  NN0 )
12575, 124syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  NN0 )
126125nn0cnd 10268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  CC )
127107nn0cnd 10268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  A )  e.  CC )
128126, 127addcomd 9260 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  f
)  +  ( # `  A ) )  =  ( ( # `  A
)  +  ( # `  f ) ) )
129111nn0cnd 10268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  CC )
130129, 127addcomd 9260 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( c  +  (
# `  A )
)  =  ( (
# `  A )  +  c ) )
131130fveq2d 5724 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ZZ>= `  ( c  +  ( # `  A
) ) )  =  ( ZZ>= `  ( ( # `
 A )  +  c ) ) )
132123, 128, 1313eltr3d 2515 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  ( # `  f ) )  e.  ( ZZ>= `  ( ( # `
 A )  +  c ) ) )
133118, 132eqeltrd 2509 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( A concat 
f ) )  e.  ( ZZ>= `  ( ( # `
 A )  +  c ) ) )
134 lencl 11727 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e. Word  ( I  X.  2o )  ->  ( # `  B )  e.  NN0 )
13588, 134syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  B )  e.  NN0 )
136 uzaddcl 10525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  ( A concat  f ) )  e.  ( ZZ>= `  ( ( # `
 A )  +  c ) )  /\  ( # `  B )  e.  NN0 )  -> 
( ( # `  ( A concat  f ) )  +  ( # `  B
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) )
137133, 135, 136syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  ( A concat  f ) )  +  ( # `  B
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) )
138116, 137eqeltrd 2509 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( ( A concat  f ) concat  B
) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) )
139 elfzuzb 11045 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  A
)  +  c )  e.  ( 0 ... ( # `  (
( A concat  f ) concat  B ) ) )  <->  ( (
( # `  A )  +  c )  e.  ( ZZ>= `  0 )  /\  ( # `  (
( A concat  f ) concat  B ) )  e.  (
ZZ>= `  ( ( # `  A )  +  c ) ) ) )
140113, 138, 139sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  ( 0 ... ( # `  (
( A concat  f ) concat  B ) ) ) )
1411, 2, 3, 4efgtval 15347 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A concat  f
) concat  B )  e.  W  /\  ( ( # `  A
)  +  c )  e.  ( 0 ... ( # `  (
( A concat  f ) concat  B ) ) )  /\  u  e.  ( I  X.  2o ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  =  ( ( ( A concat  f ) concat  B ) splice  <. ( (
# `  A )  +  c ) ,  ( ( # `  A
)  +  c ) ,  <" u ( M `  u ) "> >. )
)
14272, 140, 70, 141syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  =  ( ( ( A concat  f ) concat  B ) splice  <. ( (
# `  A )  +  c ) ,  ( ( # `  A
)  +  c ) ,  <" u ( M `  u ) "> >. )
)
143 wrd0 11724 . . . . . . . . . . . . . . . 16  |-  (/)  e. Word  (
I  X.  2o )
144143a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  ->  (/) 
e. Word  ( I  X.  2o ) )
145 ccatcl 11735 . . . . . . . . . . . . . . . 16  |-  ( ( ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o )  /\  B  e. Word  (
I  X.  2o ) )  ->  ( (
f substr  <. c ,  (
# `  f ) >. ) concat  B )  e. Word 
( I  X.  2o ) )
14687, 88, 145syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. c ,  ( # `  f
) >. ) concat  B )  e. Word  ( I  X.  2o ) )
147 ccatrid 11741 . . . . . . . . . . . . . . . . . 18  |-  ( ( A concat  ( f substr  <. 0 ,  c >. ) )  e. Word  ( I  X.  2o )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  (/) )  =  ( A concat  ( f substr  <. 0 ,  c >.
) ) )
14879, 147syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  (/) )  =  ( A concat  ( f substr  <. 0 ,  c >.
) ) )
149148oveq1d 6088 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (/) ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
)  =  ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  ( ( f substr  <. c ,  ( # `  f ) >. ) concat  B ) ) )
150 ccatass 11742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A concat  ( f substr  <. 0 ,  c >.
) )  e. Word  (
I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o )  /\  B  e. Word  (
I  X.  2o ) )  ->  ( (
( A concat  ( f substr  <.
0 ,  c >.
) ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) concat  B )  =  ( ( A concat  ( f substr  <. 0 ,  c >.
) ) concat  ( (
f substr  <. c ,  (
# `  f ) >. ) concat  B ) ) )
15179, 87, 88, 150syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
152 ccatass 11742 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o )  /\  ( f substr  <. c ,  ( # `  f
) >. )  e. Word  (
I  X.  2o ) )  ->  ( ( A concat  ( f substr  <. 0 ,  c >. )
) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( A concat  ( ( f substr  <. 0 ,  c
>. ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) ) )
15374, 77, 87, 152syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  ( f substr  <. c ,  ( # `  f ) >. )
)  =  ( A concat 
( ( f substr  <. 0 ,  c >. ) concat 
( f substr  <. c ,  ( # `  f
) >. ) ) ) )
154111, 108syl6eleq 2525 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
c  e.  ( ZZ>= ` 
0 ) )
155 eluzfz1 11056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... c
) )
156154, 155syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
0  e.  ( 0 ... c ) )
157125, 108syl6eleq 2525 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  ( ZZ>= `  0
) )
158 eluzfz2 11057 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  f )  e.  ( ZZ>= `  0 )  ->  ( # `  f
)  e.  ( 0 ... ( # `  f
) ) )
159157, 158syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  f )  e.  ( 0 ... ( # `  f
) ) )
160 ccatswrd 11765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  e. Word  ( I  X.  2o )  /\  ( 0  e.  ( 0 ... c )  /\  c  e.  ( 0 ... ( # `  f ) )  /\  ( # `  f )  e.  ( 0 ... ( # `  f
) ) ) )  ->  ( ( f substr  <. 0 ,  c >.
) concat  ( f substr  <. c ,  ( # `  f
) >. ) )  =  ( f substr  <. 0 ,  ( # `  f
) >. ) )
16175, 156, 69, 159, 160syl13anc 1186 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. 0 ,  c >. ) concat 
( f substr  <. c ,  ( # `  f
) >. ) )  =  ( f substr  <. 0 ,  ( # `  f
) >. ) )
162 swrdid 11764 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  e. Word  ( I  X.  2o )  ->  ( f substr  <. 0 ,  ( # `  f ) >. )  =  f )
16375, 162syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( f substr  <. 0 ,  ( # `  f
) >. )  =  f )
164161, 163eqtrd 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( f substr  <. 0 ,  c >. ) concat 
( f substr  <. c ,  ( # `  f
) >. ) )  =  f )
165164oveq2d 6089 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( A concat  ( (
f substr  <. 0 ,  c
>. ) concat  ( f substr  <.
c ,  ( # `  f ) >. )
) )  =  ( A concat  f ) )
166153, 165eqtrd 2467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  ( f substr  <. c ,  ( # `  f ) >. )
)  =  ( A concat 
f ) )
167166oveq1d 6088 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
( f substr  <. 0 ,  c >. ) ) concat  (
f substr  <. c ,  (
# `  f ) >. ) ) concat  B )  =  ( ( A concat 
f ) concat  B )
)
168149, 151, 1673eqtr2rd 2474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  f
) concat  B )  =  ( ( ( A concat  (
f substr  <. 0 ,  c
>. ) ) concat  (/) ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
169 ccatlen 11736 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e. Word  ( I  X.  2o )  /\  ( f substr  <. 0 ,  c >. )  e. Word  (
I  X.  2o ) )  ->  ( # `  ( A concat  ( f substr  <. 0 ,  c >. )
) )  =  ( ( # `  A
)  +  ( # `  ( f substr  <. 0 ,  c >. )
) ) )
17074, 77, 169syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( A concat 
( f substr  <. 0 ,  c >. ) ) )  =  ( ( # `  A )  +  (
# `  ( f substr  <.
0 ,  c >.
) ) ) )
171 swrd0len 11761 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e. Word  ( I  X.  2o )  /\  c  e.  ( 0 ... ( # `  f
) ) )  -> 
( # `  ( f substr  <. 0 ,  c >.
) )  =  c )
17275, 69, 171syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( # `  ( f substr  <. 0 ,  c >.
) )  =  c )
173172oveq2d 6089 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  ( # `  ( f substr  <. 0 ,  c >. )
) )  =  ( ( # `  A
)  +  c ) )
174170, 173eqtr2d 2468 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  =  ( # `  ( A concat  ( f substr  <. 0 ,  c >. )
) ) )
175 hash0 11638 . . . . . . . . . . . . . . . . 17  |-  ( # `  (/) )  =  0
176175oveq2i 6084 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  A
)  +  c )  +  ( # `  (/) ) )  =  ( ( (
# `  A )  +  c )  +  0 )
177107, 111nn0addcld 10270 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  NN0 )
178177nn0cnd 10268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  e.  CC )
179178addid1d 9258 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c )  +  0 )  =  ( ( # `  A )  +  c ) )
180176, 179syl5req 2480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( # `  A
)  +  c )  =  ( ( (
# `  A )  +  c )  +  ( # `  (/) ) ) )
18179, 144, 146, 83, 168, 174, 180splval2 11778 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( A concat 
f ) concat  B ) splice  <.
( ( # `  A
)  +  c ) ,  ( ( # `  A )  +  c ) ,  <" u
( M `  u
) "> >. )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >. ) ) concat  <" u ( M `  u ) "> ) concat  (
( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
182142, 181eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  =  ( ( ( A concat  ( f substr  <. 0 ,  c >.
) ) concat  <" u
( M `  u
) "> ) concat  ( ( f substr  <. c ,  ( # `  f
) >. ) concat  B )
) )
18390, 105, 1823eqtr4d 2477 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
c ( T `  f ) u ) ) concat  B )  =  ( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u ) )
1841, 2, 3, 4efgtf 15346 . . . . . . . . . . . . . . 15  |-  ( ( ( A concat  f ) concat  B )  e.  W  ->  ( ( T `  ( ( A concat  f
) concat  B ) )  =  ( a  e.  ( 0 ... ( # `  ( ( A concat  f
) concat  B ) ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( ( ( A concat 
f ) concat  B ) splice  <.
a ,  a , 
<" b ( M `
 b ) "> >. ) )  /\  ( T `  ( ( A concat  f ) concat  B
) ) : ( ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) --> W ) )
185184simprd 450 . . . . . . . . . . . . . 14  |-  ( ( ( A concat  f ) concat  B )  e.  W  ->  ( T `  (
( A concat  f ) concat  B ) ) : ( ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) --> W )
186 ffn 5583 . . . . . . . . . . . . . 14  |-  ( ( T `  ( ( A concat  f ) concat  B
) ) : ( ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) --> W  ->  ( T `  ( ( A concat  f ) concat  B ) )  Fn  ( ( 0 ... ( # `  ( ( A concat  f
) concat  B ) ) )  X.  ( I  X.  2o ) ) )
18772, 185, 1863syl 19 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( T `  (
( A concat  f ) concat  B ) )  Fn  (
( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) ) )
188 fnovrn 6213 . . . . . . . . . . . . 13  |-  ( ( ( T `  (
( A concat  f ) concat  B ) )  Fn  (
( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  X.  (
I  X.  2o ) )  /\  ( (
# `  A )  +  c )  e.  ( 0 ... ( # `
 ( ( A concat 
f ) concat  B )
) )  /\  u  e.  ( I  X.  2o ) )  ->  (
( ( # `  A
)  +  c ) ( T `  (
( A concat  f ) concat  B ) ) u )  e.  ran  ( T `
 ( ( A concat 
f ) concat  B )
) )
189187, 140, 70, 188syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( ( # `  A )  +  c ) ( T `  ( ( A concat  f
) concat  B ) ) u )  e.  ran  ( T `  ( ( A concat  f ) concat  B ) ) )
190183, 189eqeltrd 2509 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  (
c ( T `  f ) u ) ) concat  B )  e. 
ran  ( T `  ( ( A concat  f
) concat  B ) ) )
1911, 2, 3, 4efgi2 15349 . . . . . . . . . . 11  |-  ( ( ( ( A concat  f
) concat  B )  e.  W  /\  ( ( A concat  (
c ( T `  f ) u ) ) concat  B )  e. 
ran  ( T `  ( ( A concat  f
) concat  B ) ) )  ->  ( ( A concat 
f ) concat  B )  .~  ( ( A concat  (
c ( T `  f ) u ) ) concat  B ) )
19272, 190, 191syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( ( A concat  f
) concat  B )  .~  (
( A concat  ( c
( T `  f
) u ) ) concat  B ) )
1931, 2, 3, 4, 9, 10, 6efgcpbllema 15378 . . . . . . . . . 10  |-  ( f L ( c ( T `  f ) u )  <->  ( f  e.  W  /\  (
c ( T `  f ) u )  e.  W  /\  (
( A concat  f ) concat  B )  .~  ( ( A concat  ( c ( T `  f ) u ) ) concat  B
) ) )
19467, 71, 192, 193syl3anbrc 1138 . . . . . . . . 9  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
f L ( c ( T `  f
) u ) )
195 vex 2951 . . . . . . . . . . 11  |-  a  e. 
_V
196 vex 2951 . . . . . . . . . . 11  |-  f  e. 
_V
197195, 196elec 6936 . . . . . . . . . 10  |-  ( a  e.  [ f ] L  <->  f L a )
198 breq2 4208 . . . . . . . . . 10  |-  ( a  =  ( c ( T `  f ) u )  ->  (
f L a  <->  f L
( c ( T `
 f ) u ) ) )
199197, 198syl5bb 249 . . . . . . . . 9  |-  ( a  =  ( c ( T `  f ) u )  ->  (
a  e.  [ f ] L  <->  f L
( c ( T `
 f ) u ) ) )
200194, 199syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( ( A  e.  W  /\  B  e.  W )  /\  f  e.  W )  /\  (
c  e.  ( 0 ... ( # `  f
) )  /\  u  e.  ( I  X.  2o ) ) )  -> 
( a  =  ( c ( T `  f ) u )  ->  a  e.  [
f ] L ) )
201200rexlimdvva 2829 . . . . . . 7  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ( E. c  e.  (
0 ... ( # `  f
) ) E. u  e.  ( I  X.  2o ) a  =  ( c ( T `  f ) u )  ->  a  e.  [
f ] L ) )
20266, 201sylbid 207 . . . . . 6  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  (
a  e.  ran  ( T `  f )  ->  a  e.  [ f ] L ) )
203202ssrdv 3346 . . . . 5  |-  ( ( ( A  e.  W  /\  B  e.  W
)  /\  f  e.  W )  ->  ran  ( T `  f ) 
C_  [ f ] L )
204203ralrimiva 2781 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] L )
205 fvex 5734 . . . . . . 7  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
2061, 205eqeltri 2505 . . . . . 6  |-  W  e. 
_V
207 erex 6921 . . . . . 6  |-  ( L  Er  W  ->  ( W  e.  _V  ->  L  e.  _V ) )
20860, 206, 207ee10 1385 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  W )  ->  L  e.  _V )
209 ereq1 6904 . . . . . . 7  |-  ( r  =  L  ->  (
r  Er  W  <->  L  Er  W ) )
210 eceq2 6934 . . . . . . . . 9  |-  ( r  =  L  ->  [ f ] r  =  [
f ] L )
211210sseq2d 3368 . . . . . . . 8  |-  ( r  =  L  ->  ( ran  ( T `  f
)  C_  [ f ] r  <->  ran  ( T `
 f )  C_  [ f ] L ) )
212211ralbidv 2717 . . . . . . 7  |-  ( r  =  L  ->  ( A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r  <->  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) )
213209, 212anbi12d 692 . . . . . 6  |-  ( r  =  L  ->  (
( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r )  <->  ( L  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) ) )
214213elabg 3075 . . . . 5  |-  ( L  e.  _V  ->  ( L  e.  { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] r ) }  <->  ( L  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) ) )
215208, 214syl 16 . . . 4  |-  ( ( A  e.  W  /\  B  e.  W )  ->  ( L  e.  {
r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f ) 
C_  [ f ] r ) }  <->  ( L  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] L ) ) )
21660, 204, 215mpbir2and 889 . . 3  |-  ( ( A  e.  W  /\  B  e.  W )  ->  L  e.  { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `
 f )  C_  [ f ] r ) } )
217 intss1 4057 . . 3  |-  ( L  e.  { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r ) }  ->  |^| { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r ) } 
C_  L )
218216, 217syl 16 . 2  |-  ( ( A  e.  W  /\  B  e.  W )  ->  |^| { r  |  ( r  Er  W  /\  A. f  e.  W  ran  ( T `  f
)  C_  [ f ] r ) } 
C_  L )
2195, 218syl5eqss 3384 1  |-  ( ( A  e.  W  /\  B  e.  W )  ->  .~  C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    \ cdif 3309    C_ wss 3312   (/)c0 3620   {csn 3806   {cpr 3807   <.cop 3809   <.cotp 3810   |^|cint 4042   U_ciun 4085   class class class wbr 4204   {copab 4257    e. cmpt 4258    _I cid 4485    X. cxp 4868   ran crn 4871   Rel wrel 4875    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1oc1o 6709   2oc2o 6710    Er wer 6894   [cec 6895   0cc0 8982   1c1 8983    + caddc 8985    - cmin 9283   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035  ..^cfzo 11127   #chash 11610  Word cword 11709   concat cconcat 11710   substr csubstr 11712   splice csplice 11713   <"cs2 11797   ~FG cefg 15330
This theorem is referenced by:  efgcpbl  15380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-ot 3816  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-ec 6899  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-hash 11611  df-word 11715  df-concat 11716  df-s1 11717  df-substr 11718  df-splice 11719  df-s2 11804  df-efg 15333
  Copyright terms: Public domain W3C validator