MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efghgrp Structured version   Unicode version

Theorem efghgrp 21953
Description: The image of a subgroup of the group  +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
efghgrp.1  |-  S  =  { y  |  E. x  e.  X  y  =  ( exp `  ( A  x.  x )
) }
efghgrp.2  |-  G  =  (  x.  |`  ( S  X.  S ) )
efghgrp.3  |-  ( ph  ->  A  e.  CC )
efghgrp.4  |-  ( ph  ->  X  C_  CC )
efghgrp.5  |-  (  +  |`  ( X  X.  X
) )  e.  (
SubGrpOp `  +  )
Assertion
Ref Expression
efghgrp  |-  ( ph  ->  G  e.  AbelOp )
Distinct variable groups:    x, y, A    ph, x, y    x, X, y
Allowed substitution hints:    S( x, y)    G( x, y)

Proof of Theorem efghgrp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 efghgrp.2 . . 3  |-  G  =  (  x.  |`  ( S  X.  S ) )
2 efghgrp.1 . . . . . . 7  |-  S  =  { y  |  E. x  e.  X  y  =  ( exp `  ( A  x.  x )
) }
3 eqid 2435 . . . . . . . 8  |-  ( x  e.  X  |->  ( exp `  ( A  x.  x
) ) )  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
43rnmpt 5108 . . . . . . 7  |-  ran  (
x  e.  X  |->  ( exp `  ( A  x.  x ) ) )  =  { y  |  E. x  e.  X  y  =  ( exp `  ( A  x.  x ) ) }
52, 4eqtr4i 2458 . . . . . 6  |-  S  =  ran  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
6 df-ima 4883 . . . . . . . 8  |-  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " X )  =  ran  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) )  |`  X )
7 efghgrp.4 . . . . . . . . . 10  |-  ( ph  ->  X  C_  CC )
8 resmpt 5183 . . . . . . . . . 10  |-  ( X 
C_  CC  ->  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) )  |`  X )  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) ) )
97, 8syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x )
) )  |`  X )  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) ) )
109rneqd 5089 . . . . . . . 8  |-  ( ph  ->  ran  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) )  |`  X )  =  ran  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) ) )
116, 10syl5eq 2479 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x )
) ) " X
)  =  ran  (
x  e.  X  |->  ( exp `  ( A  x.  x ) ) ) )
12 ax-addf 9061 . . . . . . . . . . 11  |-  +  :
( CC  X.  CC )
--> CC
1312fdmi 5588 . . . . . . . . . 10  |-  dom  +  =  ( CC  X.  CC )
1413a1i 11 . . . . . . . . 9  |-  ( ph  ->  dom  +  =  ( CC  X.  CC ) )
15 cnaddablo 21930 . . . . . . . . . . . 12  |-  +  e.  AbelOp
16 efghgrp.5 . . . . . . . . . . . 12  |-  (  +  |`  ( X  X.  X
) )  e.  (
SubGrpOp `  +  )
17 subgoablo 21891 . . . . . . . . . . . 12  |-  ( (  +  e.  AbelOp  /\  (  +  |`  ( X  X.  X ) )  e.  ( SubGrpOp `  +  )
)  ->  (  +  |`  ( X  X.  X
) )  e.  AbelOp )
1815, 16, 17mp2an 654 . . . . . . . . . . 11  |-  (  +  |`  ( X  X.  X
) )  e.  AbelOp
1918a1i 11 . . . . . . . . . 10  |-  ( ph  ->  (  +  |`  ( X  X.  X ) )  e.  AbelOp )
20 ablogrpo 21864 . . . . . . . . . 10  |-  ( (  +  |`  ( X  X.  X ) )  e. 
AbelOp  ->  (  +  |`  ( X  X.  X ) )  e.  GrpOp )
2119, 20syl 16 . . . . . . . . 9  |-  ( ph  ->  (  +  |`  ( X  X.  X ) )  e.  GrpOp )
22 eqid 2435 . . . . . . . . . 10  |-  (  +  |`  ( X  X.  X
) )  =  (  +  |`  ( X  X.  X ) )
2322resgrprn 21860 . . . . . . . . 9  |-  ( ( dom  +  =  ( CC  X.  CC )  /\  (  +  |`  ( X  X.  X ) )  e.  GrpOp  /\  X  C_  CC )  ->  X  =  ran  (  +  |`  ( X  X.  X ) ) )
2414, 21, 7, 23syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  X  =  ran  (  +  |`  ( X  X.  X ) ) )
2524imaeq2d 5195 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x )
) ) " X
)  =  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) )
2611, 25eqtr3d 2469 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )  =  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) )
275, 26syl5eq 2479 . . . . 5  |-  ( ph  ->  S  =  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) )
2827, 27xpeq12d 4895 . . . 4  |-  ( ph  ->  ( S  X.  S
)  =  ( ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) )  X.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) ) )
2928reseq2d 5138 . . 3  |-  ( ph  ->  (  x.  |`  ( S  X.  S ) )  =  (  x.  |`  (
( ( x  e.  CC  |->  ( exp `  ( A  x.  x )
) ) " ran  (  +  |`  ( X  X.  X ) ) )  X.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) ) ) )
301, 29syl5eq 2479 . 2  |-  ( ph  ->  G  =  (  x.  |`  ( ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) " ran  (  +  |`  ( X  X.  X ) ) )  X.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) ) ) )
3116a1i 11 . . 3  |-  ( ph  ->  (  +  |`  ( X  X.  X ) )  e.  ( SubGrpOp `  +  ) )
32 ablogrpo 21864 . . . . 5  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
3315, 32ax-mp 8 . . . 4  |-  +  e.  GrpOp
3433, 13grporn 21792 . . 3  |-  CC  =  ran  +
35 efghgrp.3 . . . . 5  |-  ( ph  ->  A  e.  CC )
36 mulcl 9066 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  e.  CC )
37 efcl 12677 . . . . . 6  |-  ( ( A  x.  x )  e.  CC  ->  ( exp `  ( A  x.  x ) )  e.  CC )
3836, 37syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( exp `  ( A  x.  x )
)  e.  CC )
3935, 38sylan 458 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( exp `  ( A  x.  x
) )  e.  CC )
40 eqid 2435 . . . 4  |-  ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) )  =  ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) )
4139, 40fmptd 5885 . . 3  |-  ( ph  ->  ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) : CC --> CC )
42 ssid 3359 . . . 4  |-  CC  C_  CC
4342a1i 11 . . 3  |-  ( ph  ->  CC  C_  CC )
44 ax-mulf 9062 . . . . 5  |-  x.  :
( CC  X.  CC )
--> CC
45 ffn 5583 . . . . 5  |-  (  x.  : ( CC  X.  CC ) --> CC  ->  x.  Fn  ( CC  X.  CC ) )
4644, 45ax-mp 8 . . . 4  |-  x.  Fn  ( CC  X.  CC )
4746a1i 11 . . 3  |-  ( ph  ->  x.  Fn  ( CC 
X.  CC ) )
4840efgh 20435 . . . . 5  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) `  ( y  +  z ) )  =  ( ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) `  y )  x.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) `  z ) ) )
49483expb 1154 . . . 4  |-  ( ( A  e.  CC  /\  ( y  e.  CC  /\  z  e.  CC ) )  ->  ( (
x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) `  ( y  +  z ) )  =  ( ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) `  y )  x.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) `  z ) ) )
5035, 49sylan 458 . . 3  |-  ( (
ph  /\  ( y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  e.  CC  |->  ( exp `  ( A  x.  x )
) ) `  (
y  +  z ) )  =  ( ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) `  y )  x.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) `  z ) ) )
51 eqid 2435 . . 3  |-  ran  (  +  |`  ( X  X.  X ) )  =  ran  (  +  |`  ( X  X.  X ) )
52 eqid 2435 . . 3  |-  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) )  =  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) " ran  (  +  |`  ( X  X.  X ) ) )
53 eqid 2435 . . 3  |-  (  x.  |`  ( ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) " ran  (  +  |`  ( X  X.  X ) ) )  X.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) ) )  =  (  x.  |`  ( (
( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) )  X.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x
) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) ) )
5431, 34, 41, 43, 47, 50, 51, 52, 53, 19ghsubablo 21952 . 2  |-  ( ph  ->  (  x.  |`  (
( ( x  e.  CC  |->  ( exp `  ( A  x.  x )
) ) " ran  (  +  |`  ( X  X.  X ) ) )  X.  ( ( x  e.  CC  |->  ( exp `  ( A  x.  x ) ) ) " ran  (  +  |`  ( X  X.  X ) ) ) ) )  e.  AbelOp )
5530, 54eqeltrd 2509 1  |-  ( ph  ->  G  e.  AbelOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   E.wrex 2698    C_ wss 3312    e. cmpt 4258    X. cxp 4868   dom cdm 4870   ran crn 4871    |` cres 4872   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980    + caddc 8985    x. cmul 8987   expce 12656   GrpOpcgr 21766   AbelOpcablo 21861   SubGrpOpcsubgo 21881
This theorem is referenced by:  circgrp  21954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-subgo 21882
  Copyright terms: Public domain W3C validator