MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Unicode version

Theorem efgi 15044
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgi  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)

Proof of Theorem efgi
Dummy variables  a 
b  i  r  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . . . . . . . . . 11  |-  ( u  =  A  ->  ( # `
 u )  =  ( # `  A
) )
21oveq2d 5890 . . . . . . . . . 10  |-  ( u  =  A  ->  (
0 ... ( # `  u
) )  =  ( 0 ... ( # `  A ) ) )
3 id 19 . . . . . . . . . . . 12  |-  ( u  =  A  ->  u  =  A )
4 oveq1 5881 . . . . . . . . . . . 12  |-  ( u  =  A  ->  (
u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
53, 4breq12d 4052 . . . . . . . . . . 11  |-  ( u  =  A  ->  (
u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
652ralbidv 2598 . . . . . . . . . 10  |-  ( u  =  A  ->  ( A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
72, 6raleqbidv 2761 . . . . . . . . 9  |-  ( u  =  A  ->  ( A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  <->  A. i  e.  ( 0 ... ( # `  A ) ) A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
87rspcv 2893 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. i  e.  ( 0 ... ( # `
 A ) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
9 oteq1 3821 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
10 oteq2 3822 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
119, 10eqtrd 2328 . . . . . . . . . . . 12  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
1211oveq2d 5890 . . . . . . . . . . 11  |-  ( i  =  N  ->  ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
1312breq2d 4051 . . . . . . . . . 10  |-  ( i  =  N  ->  ( A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
14132ralbidv 2598 . . . . . . . . 9  |-  ( i  =  N  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
1514rspcv 2893 . . . . . . . 8  |-  ( N  e.  ( 0 ... ( # `  A
) )  ->  ( A. i  e.  (
0 ... ( # `  A
) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
168, 15sylan9 638 . . . . . . 7  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
17 opeq1 3812 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  b >.  =  <. J ,  b >. )
18 opeq1 3812 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  ( 1o  \ 
b ) >.  =  <. J ,  ( 1o  \ 
b ) >. )
1917, 18s2eqd 11528 . . . . . . . . . . 11  |-  ( a  =  J  ->  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. ">  =  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> )
20 oteq3 3823 . . . . . . . . . . 11  |-  ( <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. ">  =  <"
<. J ,  b >. <. J ,  ( 1o 
\  b ) >. ">  ->  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )
2119, 20syl 15 . . . . . . . . . 10  |-  ( a  =  J  ->  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )
2221oveq2d 5890 . . . . . . . . 9  |-  ( a  =  J  ->  ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )
)
2322breq2d 4051 . . . . . . . 8  |-  ( a  =  J  ->  ( A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >. )
) )
24 opeq2 3813 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
b >.  =  <. J ,  K >. )
25 difeq2 3301 . . . . . . . . . . . . . 14  |-  ( b  =  K  ->  ( 1o  \  b )  =  ( 1o  \  K
) )
2625opeq2d 3819 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
( 1o  \  b
) >.  =  <. J , 
( 1o  \  K
) >. )
2724, 26s2eqd 11528 . . . . . . . . . . . 12  |-  ( b  =  K  ->  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. ">  =  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> )
28 oteq3 3823 . . . . . . . . . . . 12  |-  ( <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. ">  =  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. ">  -> 
<. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >.  =  <. N ,  N ,  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. "> >.
)
2927, 28syl 15 . . . . . . . . . . 11  |-  ( b  =  K  ->  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >.  =  <. N ,  N ,  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. "> >.
)
3029oveq2d 5890 . . . . . . . . . 10  |-  ( b  =  K  ->  ( A splice  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )  =  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
3130breq2d 4051 . . . . . . . . 9  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
) )
32 df-br 4040 . . . . . . . . 9  |-  ( A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r )
3331, 32syl6bb 252 . . . . . . . 8  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r ) )
3423, 33rspc2v 2903 . . . . . . 7  |-  ( ( J  e.  I  /\  K  e.  2o )  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3516, 34sylan9 638 . . . . . 6  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3635adantld 453 . . . . 5  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  (
( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3736alrimiv 1621 . . . 4  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
38 opex 4253 . . . . 5  |-  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  _V
3938elintab 3889 . . . 4  |-  ( <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }  <->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
4037, 39sylibr 203 . . 3  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) } )
41 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
42 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
4341, 42efgval 15042 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }
4440, 43syl6eleqr 2387 . 2  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  .~  )
45 df-br 4040 . 2  |-  ( A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  .~  )
4644, 45sylibr 203 1  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556    \ cdif 3162   <.cop 3656   <.cotp 3657   |^|cint 3878   class class class wbr 4039    _I cid 4320    X. cxp 4703   ` cfv 5271  (class class class)co 5874   1oc1o 6488   2oc2o 6489    Er wer 6673   0cc0 8753   ...cfz 10798   #chash 11353  Word cword 11419   splice csplice 11423   <"cs2 11507   ~FG cefg 15031
This theorem is referenced by:  efgi0  15045  efgi1  15046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-ot 3663  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-substr 11428  df-splice 11429  df-s2 11514  df-efg 15034
  Copyright terms: Public domain W3C validator