MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Unicode version

Theorem efgi 15279
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgi  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)

Proof of Theorem efgi
Dummy variables  a 
b  i  r  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5669 . . . . . . . . . . 11  |-  ( u  =  A  ->  ( # `
 u )  =  ( # `  A
) )
21oveq2d 6037 . . . . . . . . . 10  |-  ( u  =  A  ->  (
0 ... ( # `  u
) )  =  ( 0 ... ( # `  A ) ) )
3 id 20 . . . . . . . . . . . 12  |-  ( u  =  A  ->  u  =  A )
4 oveq1 6028 . . . . . . . . . . . 12  |-  ( u  =  A  ->  (
u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
53, 4breq12d 4167 . . . . . . . . . . 11  |-  ( u  =  A  ->  (
u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
652ralbidv 2692 . . . . . . . . . 10  |-  ( u  =  A  ->  ( A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
72, 6raleqbidv 2860 . . . . . . . . 9  |-  ( u  =  A  ->  ( A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  <->  A. i  e.  ( 0 ... ( # `  A ) ) A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
87rspcv 2992 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. i  e.  ( 0 ... ( # `
 A ) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
9 oteq1 3936 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
10 oteq2 3937 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
119, 10eqtrd 2420 . . . . . . . . . . . 12  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
1211oveq2d 6037 . . . . . . . . . . 11  |-  ( i  =  N  ->  ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
1312breq2d 4166 . . . . . . . . . 10  |-  ( i  =  N  ->  ( A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
14132ralbidv 2692 . . . . . . . . 9  |-  ( i  =  N  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
1514rspcv 2992 . . . . . . . 8  |-  ( N  e.  ( 0 ... ( # `  A
) )  ->  ( A. i  e.  (
0 ... ( # `  A
) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
168, 15sylan9 639 . . . . . . 7  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
17 opeq1 3927 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  b >.  =  <. J ,  b >. )
18 opeq1 3927 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  ( 1o  \ 
b ) >.  =  <. J ,  ( 1o  \ 
b ) >. )
1917, 18s2eqd 11754 . . . . . . . . . . 11  |-  ( a  =  J  ->  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. ">  =  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> )
2019oteq3d 3941 . . . . . . . . . 10  |-  ( a  =  J  ->  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )
2120oveq2d 6037 . . . . . . . . 9  |-  ( a  =  J  ->  ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )
)
2221breq2d 4166 . . . . . . . 8  |-  ( a  =  J  ->  ( A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >. )
) )
23 opeq2 3928 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
b >.  =  <. J ,  K >. )
24 difeq2 3403 . . . . . . . . . . . . . 14  |-  ( b  =  K  ->  ( 1o  \  b )  =  ( 1o  \  K
) )
2524opeq2d 3934 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
( 1o  \  b
) >.  =  <. J , 
( 1o  \  K
) >. )
2623, 25s2eqd 11754 . . . . . . . . . . . 12  |-  ( b  =  K  ->  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. ">  =  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> )
2726oteq3d 3941 . . . . . . . . . . 11  |-  ( b  =  K  ->  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >.  =  <. N ,  N ,  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. "> >.
)
2827oveq2d 6037 . . . . . . . . . 10  |-  ( b  =  K  ->  ( A splice  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )  =  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
2928breq2d 4166 . . . . . . . . 9  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
) )
30 df-br 4155 . . . . . . . . 9  |-  ( A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r )
3129, 30syl6bb 253 . . . . . . . 8  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r ) )
3222, 31rspc2v 3002 . . . . . . 7  |-  ( ( J  e.  I  /\  K  e.  2o )  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3316, 32sylan9 639 . . . . . 6  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3433adantld 454 . . . . 5  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  (
( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3534alrimiv 1638 . . . 4  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
36 opex 4369 . . . . 5  |-  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  _V
3736elintab 4004 . . . 4  |-  ( <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }  <->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3835, 37sylibr 204 . . 3  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) } )
39 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
40 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
4139, 40efgval 15277 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }
4238, 41syl6eleqr 2479 . 2  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  .~  )
43 df-br 4155 . 2  |-  ( A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  .~  )
4442, 43sylibr 204 1  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1717   {cab 2374   A.wral 2650    \ cdif 3261   <.cop 3761   <.cotp 3762   |^|cint 3993   class class class wbr 4154    _I cid 4435    X. cxp 4817   ` cfv 5395  (class class class)co 6021   1oc1o 6654   2oc2o 6655    Er wer 6839   0cc0 8924   ...cfz 10976   #chash 11546  Word cword 11645   splice csplice 11649   <"cs2 11733   ~FG cefg 15266
This theorem is referenced by:  efgi0  15280  efgi1  15281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-ot 3768  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-fz 10977  df-fzo 11067  df-hash 11547  df-word 11651  df-concat 11652  df-s1 11653  df-substr 11654  df-splice 11655  df-s2 11740  df-efg 15269
  Copyright terms: Public domain W3C validator