MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi Unicode version

Theorem efgi 15028
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
efgi  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)

Proof of Theorem efgi
Dummy variables  a 
b  i  r  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . . . . . . . 11  |-  ( u  =  A  ->  ( # `
 u )  =  ( # `  A
) )
21oveq2d 5874 . . . . . . . . . 10  |-  ( u  =  A  ->  (
0 ... ( # `  u
) )  =  ( 0 ... ( # `  A ) ) )
3 id 19 . . . . . . . . . . . 12  |-  ( u  =  A  ->  u  =  A )
4 oveq1 5865 . . . . . . . . . . . 12  |-  ( u  =  A  ->  (
u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
53, 4breq12d 4036 . . . . . . . . . . 11  |-  ( u  =  A  ->  (
u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
652ralbidv 2585 . . . . . . . . . 10  |-  ( u  =  A  ->  ( A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
72, 6raleqbidv 2748 . . . . . . . . 9  |-  ( u  =  A  ->  ( A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  <->  A. i  e.  ( 0 ... ( # `  A ) ) A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >. ) ) )
87rspcv 2880 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. i  e.  ( 0 ... ( # `
 A ) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
9 oteq1 3805 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
10 oteq2 3806 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  <. N , 
i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
119, 10eqtrd 2315 . . . . . . . . . . . 12  |-  ( i  =  N  ->  <. i ,  i ,  <"
<. a ,  b >. <. a ,  ( 1o 
\  b ) >. "> >.  =  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)
1211oveq2d 5874 . . . . . . . . . . 11  |-  ( i  =  N  ->  ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)
1312breq2d 4035 . . . . . . . . . 10  |-  ( i  =  N  ->  ( A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
14132ralbidv 2585 . . . . . . . . 9  |-  ( i  =  N  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A. a  e.  I  A. b  e.  2o  A
r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
1514rspcv 2880 . . . . . . . 8  |-  ( N  e.  ( 0 ... ( # `  A
) )  ->  ( A. i  e.  (
0 ... ( # `  A
) ) A. a  e.  I  A. b  e.  2o  A r ( A splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) )
168, 15sylan9 638 . . . . . . 7  |-  ( ( A  e.  W  /\  N  e.  ( 0 ... ( # `  A
) ) )  -> 
( A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  ->  A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
) )
17 opeq1 3796 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  b >.  =  <. J ,  b >. )
18 opeq1 3796 . . . . . . . . . . . 12  |-  ( a  =  J  ->  <. a ,  ( 1o  \ 
b ) >.  =  <. J ,  ( 1o  \ 
b ) >. )
1917, 18s2eqd 11512 . . . . . . . . . . 11  |-  ( a  =  J  ->  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. ">  =  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> )
20 oteq3 3807 . . . . . . . . . . 11  |-  ( <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. ">  =  <"
<. J ,  b >. <. J ,  ( 1o 
\  b ) >. ">  ->  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )
2119, 20syl 15 . . . . . . . . . 10  |-  ( a  =  J  ->  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.  =  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )
2221oveq2d 5874 . . . . . . . . 9  |-  ( a  =  J  ->  ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  =  ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )
)
2322breq2d 4035 . . . . . . . 8  |-  ( a  =  J  ->  ( A r ( A splice  <. N ,  N ,  <" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >. )
) )
24 opeq2 3797 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
b >.  =  <. J ,  K >. )
25 difeq2 3288 . . . . . . . . . . . . . 14  |-  ( b  =  K  ->  ( 1o  \  b )  =  ( 1o  \  K
) )
2625opeq2d 3803 . . . . . . . . . . . . 13  |-  ( b  =  K  ->  <. J , 
( 1o  \  b
) >.  =  <. J , 
( 1o  \  K
) >. )
2724, 26s2eqd 11512 . . . . . . . . . . . 12  |-  ( b  =  K  ->  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. ">  =  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> )
28 oteq3 3807 . . . . . . . . . . . 12  |-  ( <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. ">  =  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. ">  -> 
<. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >.  =  <. N ,  N ,  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. "> >.
)
2927, 28syl 15 . . . . . . . . . . 11  |-  ( b  =  K  ->  <. N ,  N ,  <" <. J ,  b >. <. J , 
( 1o  \  b
) >. "> >.  =  <. N ,  N ,  <"
<. J ,  K >. <. J ,  ( 1o  \  K ) >. "> >.
)
3029oveq2d 5874 . . . . . . . . . 10  |-  ( b  =  K  ->  ( A splice  <. N ,  N ,  <" <. J , 
b >. <. J ,  ( 1o  \  b )
>. "> >. )  =  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
3130breq2d 4035 . . . . . . . . 9  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
) )
32 df-br 4024 . . . . . . . . 9  |-  ( A r ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r )
3331, 32syl6bb 252 . . . . . . . 8  |-  ( b  =  K  ->  ( A r ( A splice  <. N ,  N ,  <" <. J ,  b
>. <. J ,  ( 1o  \  b )
>. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  r ) )
3423, 33rspc2v 2890 . . . . . . 7  |-  ( ( J  e.  I  /\  K  e.  2o )  ->  ( A. a  e.  I  A. b  e.  2o  A r ( A splice  <. N ,  N ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3516, 34sylan9 638 . . . . . 6  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  ( A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3635adantld 453 . . . . 5  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  (
( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
3736alrimiv 1617 . . . 4  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
38 opex 4237 . . . . 5  |-  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  _V
3938elintab 3873 . . . 4  |-  ( <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }  <->  A. r
( ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `
 u ) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i , 
<" <. a ,  b
>. <. a ,  ( 1o  \  b )
>. "> >. )
)  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  r ) )
4037, 39sylibr 203 . . 3  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  (
0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) } )
41 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
42 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
4341, 42efgval 15026 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. u  e.  W  A. i  e.  ( 0 ... ( # `  u
) ) A. a  e.  I  A. b  e.  2o  u r ( u splice  <. i ,  i ,  <" <. a ,  b >. <. a ,  ( 1o  \ 
b ) >. "> >.
) ) }
4440, 43syl6eleqr 2374 . 2  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  <. A , 
( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. ) >.  e.  .~  )
45 df-br 4024 . 2  |-  ( A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )  <->  <. A ,  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J ,  ( 1o  \  K )
>. "> >. ) >.  e.  .~  )
4644, 45sylibr 203 1  |-  ( ( ( A  e.  W  /\  N  e.  (
0 ... ( # `  A
) ) )  /\  ( J  e.  I  /\  K  e.  2o ) )  ->  A  .~  ( A splice  <. N ,  N ,  <" <. J ,  K >. <. J , 
( 1o  \  K
) >. "> >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543    \ cdif 3149   <.cop 3643   <.cotp 3644   |^|cint 3862   class class class wbr 4023    _I cid 4304    X. cxp 4687   ` cfv 5255  (class class class)co 5858   1oc1o 6472   2oc2o 6473    Er wer 6657   0cc0 8737   ...cfz 10782   #chash 11337  Word cword 11403   splice csplice 11407   <"cs2 11491   ~FG cefg 15015
This theorem is referenced by:  efgi0  15029  efgi1  15030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-s2 11498  df-efg 15018
  Copyright terms: Public domain W3C validator