MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgi2 Unicode version

Theorem efgi2 15034
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efgi2  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A  .~  B
)
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    B( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efgi2
Dummy variables  a 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( T `  a )  =  ( T `  A ) )
21rneqd 4906 . . . . . . . . . 10  |-  ( a  =  A  ->  ran  ( T `  a )  =  ran  ( T `
 A ) )
3 eceq1 6696 . . . . . . . . . 10  |-  ( a  =  A  ->  [ a ] r  =  [ A ] r )
42, 3sseq12d 3207 . . . . . . . . 9  |-  ( a  =  A  ->  ( ran  ( T `  a
)  C_  [ a ] r  <->  ran  ( T `
 A )  C_  [ A ] r ) )
54rspcv 2880 . . . . . . . 8  |-  ( A  e.  W  ->  ( A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r  ->  ran  ( T `  A ) 
C_  [ A ]
r ) )
65adantr 451 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r  ->  ran  ( T `  A
)  C_  [ A ] r ) )
7 ssel 3174 . . . . . . . . 9  |-  ( ran  ( T `  A
)  C_  [ A ] r  ->  ( B  e.  ran  ( T `
 A )  ->  B  e.  [ A ] r ) )
87com12 27 . . . . . . . 8  |-  ( B  e.  ran  ( T `
 A )  -> 
( ran  ( T `  A )  C_  [ A ] r  ->  B  e.  [ A ] r ) )
9 simpl 443 . . . . . . . . . . 11  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  B  e.  [ A ] r )
10 elecg 6698 . . . . . . . . . . 11  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  ( B  e.  [ A ] r  <->  A r B ) )
119, 10mpbid 201 . . . . . . . . . 10  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  A
r B )
12 df-br 4024 . . . . . . . . . 10  |-  ( A r B  <->  <. A ,  B >.  e.  r )
1311, 12sylib 188 . . . . . . . . 9  |-  ( ( B  e.  [ A ] r  /\  A  e.  W )  ->  <. A ,  B >.  e.  r )
1413expcom 424 . . . . . . . 8  |-  ( A  e.  W  ->  ( B  e.  [ A ] r  ->  <. A ,  B >.  e.  r ) )
158, 14sylan9r 639 . . . . . . 7  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( ran  ( T `  A )  C_ 
[ A ] r  ->  <. A ,  B >.  e.  r ) )
166, 15syld 40 . . . . . 6  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r  ->  <. A ,  B >.  e.  r ) )
1716adantld 453 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  ( ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
1817alrimiv 1617 . . . 4  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A. r ( ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
19 opex 4237 . . . . 5  |-  <. A ,  B >.  e.  _V
2019elintab 3873 . . . 4  |-  ( <. A ,  B >.  e. 
|^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }  <->  A. r
( ( r  Er  W  /\  A. a  e.  W  ran  ( T `
 a )  C_  [ a ] r )  ->  <. A ,  B >.  e.  r ) )
2118, 20sylibr 203 . . 3  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  <. A ,  B >.  e.  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a
)  C_  [ a ] r ) } )
22 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
23 efgval.r . . . 4  |-  .~  =  ( ~FG  `  I )
24 efgval2.m . . . 4  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
25 efgval2.t . . . 4  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
2622, 23, 24, 25efgval2 15033 . . 3  |-  .~  =  |^| { r  |  ( r  Er  W  /\  A. a  e.  W  ran  ( T `  a ) 
C_  [ a ] r ) }
2721, 26syl6eleqr 2374 . 2  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  <. A ,  B >.  e.  .~  )
28 df-br 4024 . 2  |-  ( A  .~  B  <->  <. A ,  B >.  e.  .~  )
2927, 28sylibr 203 1  |-  ( ( A  e.  W  /\  B  e.  ran  ( T `
 A ) )  ->  A  .~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543    \ cdif 3149    C_ wss 3152   <.cop 3643   <.cotp 3644   |^|cint 3862   class class class wbr 4023    e. cmpt 4077    _I cid 4304    X. cxp 4687   ran crn 4690   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1oc1o 6472   2oc2o 6473    Er wer 6657   [cec 6658   0cc0 8737   ...cfz 10782   #chash 11337  Word cword 11403   splice csplice 11407   <"cs2 11491   ~FG cefg 15015
This theorem is referenced by:  efginvrel2  15036  efgsrel  15043  efgcpbllemb  15064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-s2 11498  df-efg 15018
  Copyright terms: Public domain W3C validator