MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel2 Unicode version

Theorem efginvrel2 15287
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
Assertion
Ref Expression
efginvrel2  |-  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) )
Distinct variable groups:    y, z    v, n, w, y, z   
n, M, v, w   
n, W, v, w, y, z    y,  .~ , z    n, I, v, w, y, z
Allowed substitution hints:    A( y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    M( y, z)

Proof of Theorem efginvrel2
Dummy variables  a 
b  c  u  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 5724 . . . 4  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3322 . . 3  |-  W  C_ Word  ( I  X.  2o )
43sseli 3288 . 2  |-  ( A  e.  W  ->  A  e. Word  ( I  X.  2o ) )
5 id 20 . . . . . 6  |-  ( c  =  (/)  ->  c  =  (/) )
6 fveq2 5669 . . . . . . . . 9  |-  ( c  =  (/)  ->  (reverse `  c
)  =  (reverse `  (/) ) )
7 rev0 11724 . . . . . . . . 9  |-  (reverse `  (/) )  =  (/)
86, 7syl6eq 2436 . . . . . . . 8  |-  ( c  =  (/)  ->  (reverse `  c
)  =  (/) )
98coeq2d 4976 . . . . . . 7  |-  ( c  =  (/)  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (/) ) )
10 co02 5324 . . . . . . 7  |-  ( M  o.  (/) )  =  (/)
119, 10syl6eq 2436 . . . . . 6  |-  ( c  =  (/)  ->  ( M  o.  (reverse `  c
) )  =  (/) )
125, 11oveq12d 6039 . . . . 5  |-  ( c  =  (/)  ->  ( c concat 
( M  o.  (reverse `  c ) ) )  =  ( (/) concat  (/) ) )
1312breq1d 4164 . . . 4  |-  ( c  =  (/)  ->  ( ( c concat  ( M  o.  (reverse `  c ) ) )  .~  (/)  <->  ( (/) concat  (/) )  .~  (/) ) )
1413imbi2d 308 . . 3  |-  ( c  =  (/)  ->  ( ( A  e.  W  -> 
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/) )  <->  ( A  e.  W  ->  ( (/) concat  (/) )  .~  (/) ) ) )
15 id 20 . . . . . 6  |-  ( c  =  a  ->  c  =  a )
16 fveq2 5669 . . . . . . 7  |-  ( c  =  a  ->  (reverse `  c )  =  (reverse `  a ) )
1716coeq2d 4976 . . . . . 6  |-  ( c  =  a  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (reverse `  a
) ) )
1815, 17oveq12d 6039 . . . . 5  |-  ( c  =  a  ->  (
c concat  ( M  o.  (reverse `  c ) ) )  =  ( a concat  ( M  o.  (reverse `  a
) ) ) )
1918breq1d 4164 . . . 4  |-  ( c  =  a  ->  (
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/)  <->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) ) )
2019imbi2d 308 . . 3  |-  ( c  =  a  ->  (
( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) ) ) )
21 id 20 . . . . . 6  |-  ( c  =  ( a concat  <" b "> )  ->  c  =  ( a concat  <" b "> ) )
22 fveq2 5669 . . . . . . 7  |-  ( c  =  ( a concat  <" b "> )  ->  (reverse `  c )  =  (reverse `  ( a concat  <" b "> ) ) )
2322coeq2d 4976 . . . . . 6  |-  ( c  =  ( a concat  <" b "> )  ->  ( M  o.  (reverse `  c ) )  =  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )
2421, 23oveq12d 6039 . . . . 5  |-  ( c  =  ( a concat  <" b "> )  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
2524breq1d 4164 . . . 4  |-  ( c  =  ( a concat  <" b "> )  ->  ( ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/)  <->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
2625imbi2d 308 . . 3  |-  ( c  =  ( a concat  <" b "> )  ->  ( ( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( (
a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) ) )
27 id 20 . . . . . 6  |-  ( c  =  A  ->  c  =  A )
28 fveq2 5669 . . . . . . 7  |-  ( c  =  A  ->  (reverse `  c )  =  (reverse `  A ) )
2928coeq2d 4976 . . . . . 6  |-  ( c  =  A  ->  ( M  o.  (reverse `  c
) )  =  ( M  o.  (reverse `  A
) ) )
3027, 29oveq12d 6039 . . . . 5  |-  ( c  =  A  ->  (
c concat  ( M  o.  (reverse `  c ) ) )  =  ( A concat  ( M  o.  (reverse `  A
) ) ) )
3130breq1d 4164 . . . 4  |-  ( c  =  A  ->  (
( c concat  ( M  o.  (reverse `  c )
) )  .~  (/)  <->  ( A concat  ( M  o.  (reverse `  A
) ) )  .~  (/) ) )
3231imbi2d 308 . . 3  |-  ( c  =  A  ->  (
( A  e.  W  ->  ( c concat  ( M  o.  (reverse `  c
) ) )  .~  (/) )  <->  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A
) ) )  .~  (/) ) ) )
33 wrd0 11660 . . . . 5  |-  (/)  e. Word  (
I  X.  2o )
34 ccatlid 11676 . . . . 5  |-  ( (/)  e. Word  ( I  X.  2o )  ->  ( (/) concat  (/) )  =  (/) )
3533, 34ax-mp 8 . . . 4  |-  ( (/) concat  (/) )  =  (/)
36 efgval.r . . . . . . 7  |-  .~  =  ( ~FG  `  I )
371, 36efger 15278 . . . . . 6  |-  .~  Er  W
3837a1i 11 . . . . 5  |-  ( A  e.  W  ->  .~  Er  W )
391efgrcl 15275 . . . . . . 7  |-  ( A  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
4039simprd 450 . . . . . 6  |-  ( A  e.  W  ->  W  = Word  ( I  X.  2o ) )
4133, 40syl5eleqr 2475 . . . . 5  |-  ( A  e.  W  ->  (/)  e.  W
)
4238, 41erref 6862 . . . 4  |-  ( A  e.  W  ->  (/)  .~  (/) )
4335, 42syl5eqbr 4187 . . 3  |-  ( A  e.  W  ->  ( (/) concat  (/) )  .~  (/) )
4437a1i 11 . . . . . . 7  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  .~  Er  W )
45 simprl 733 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e. Word  ( I  X.  2o ) )
46 revcl 11721 . . . . . . . . . . . 12  |-  ( a  e. Word  ( I  X.  2o )  ->  (reverse `  a
)  e. Word  ( I  X.  2o ) )
4746ad2antrl 709 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  a )  e. Word  (
I  X.  2o ) )
48 efgval2.m . . . . . . . . . . . 12  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4948efgmf 15273 . . . . . . . . . . 11  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
50 wrdco 11728 . . . . . . . . . . 11  |-  ( ( (reverse `  a )  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )
5147, 49, 50sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )
52 ccatcl 11671 . . . . . . . . . 10  |-  ( ( a  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a ) )  e. Word 
( I  X.  2o ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e. Word  ( I  X.  2o ) )
5345, 51, 52syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e. Word  ( I  X.  2o ) )
5440adantr 452 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  W  = Word  ( I  X.  2o ) )
5553, 54eleqtrrd 2465 . . . . . . . 8  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  e.  W )
56 lencl 11663 . . . . . . . . . . . . . 14  |-  ( a  e. Word  ( I  X.  2o )  ->  ( # `  a )  e.  NN0 )
5756ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e. 
NN0 )
58 nn0uz 10453 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
5957, 58syl6eleq 2478 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( ZZ>= `  0 )
)
60 ccatlen 11672 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a ) )  e. Word 
( I  X.  2o ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  =  ( ( # `  a )  +  (
# `  ( M  o.  (reverse `  a )
) ) ) )
6145, 51, 60syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  =  ( ( # `  a )  +  (
# `  ( M  o.  (reverse `  a )
) ) ) )
6257nn0zd 10306 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ZZ )
63 uzid 10433 . . . . . . . . . . . . . . 15  |-  ( (
# `  a )  e.  ZZ  ->  ( # `  a
)  e.  ( ZZ>= `  ( # `  a ) ) )
6462, 63syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( ZZ>= `  ( # `  a
) ) )
65 lencl 11663 . . . . . . . . . . . . . . 15  |-  ( ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o )  ->  ( # `  ( M  o.  (reverse `  a
) ) )  e. 
NN0 )
6651, 65syl 16 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( M  o.  (reverse `  a ) ) )  e.  NN0 )
67 uzaddcl 10466 . . . . . . . . . . . . . 14  |-  ( ( ( # `  a
)  e.  ( ZZ>= `  ( # `  a ) )  /\  ( # `  ( M  o.  (reverse `  a ) ) )  e.  NN0 )  -> 
( ( # `  a
)  +  ( # `  ( M  o.  (reverse `  a ) ) ) )  e.  ( ZZ>= `  ( # `  a ) ) )
6864, 66, 67syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a )  +  ( # `  ( M  o.  (reverse `  a
) ) ) )  e.  ( ZZ>= `  ( # `
 a ) ) )
6961, 68eqeltrd 2462 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) )  e.  ( ZZ>= `  ( # `
 a ) ) )
70 elfzuzb 10986 . . . . . . . . . . . 12  |-  ( (
# `  a )  e.  ( 0 ... ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  <->  ( ( # `  a )  e.  (
ZZ>= `  0 )  /\  ( # `  ( a concat 
( M  o.  (reverse `  a ) ) ) )  e.  ( ZZ>= `  ( # `  a ) ) ) )
7159, 69, 70sylanbrc 646 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  ( 0 ... ( # `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) ) )
72 simprr 734 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  b  e.  ( I  X.  2o ) )
73 efgval2.t . . . . . . . . . . . 12  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
741, 36, 48, 73efgtval 15283 . . . . . . . . . . 11  |-  ( ( ( a concat  ( M  o.  (reverse `  a
) ) )  e.  W  /\  ( # `  a )  e.  ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  /\  b  e.  ( I  X.  2o ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  ( M  o.  (reverse `  a
) ) ) splice  <. (
# `  a ) ,  ( # `  a
) ,  <" b
( M `  b
) "> >. )
)
7555, 71, 72, 74syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  ( M  o.  (reverse `  a
) ) ) splice  <. (
# `  a ) ,  ( # `  a
) ,  <" b
( M `  b
) "> >. )
)
7633a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (/)  e. Word  (
I  X.  2o ) )
7749ffvelrni 5809 . . . . . . . . . . . . 13  |-  ( b  e.  ( I  X.  2o )  ->  ( M `
 b )  e.  ( I  X.  2o ) )
7872, 77syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M `  b )  e.  ( I  X.  2o ) )
7972, 78s2cld 11761 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b
( M `  b
) ">  e. Word  ( I  X.  2o ) )
80 ccatrid 11677 . . . . . . . . . . . . . 14  |-  ( a  e. Word  ( I  X.  2o )  ->  ( a concat  (/) )  =  a )
8180ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  (/) )  =  a )
8281eqcomd 2393 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  =  ( a concat  (/) ) )
8382oveq1d 6036 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  (/) ) concat  ( M  o.  (reverse `  a ) ) ) )
84 eqidd 2389 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  =  ( # `  a
) )
85 hash0 11574 . . . . . . . . . . . . 13  |-  ( # `  (/) )  =  0
8685oveq2i 6032 . . . . . . . . . . . 12  |-  ( (
# `  a )  +  ( # `  (/) ) )  =  ( ( # `  a )  +  0 )
8757nn0cnd 10209 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  e.  CC )
8887addid1d 9199 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a )  +  0 )  =  ( # `  a
) )
8986, 88syl5req 2433 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( # `
 a )  =  ( ( # `  a
)  +  ( # `  (/) ) ) )
9045, 76, 51, 79, 83, 84, 89splval2 11714 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  ( M  o.  (reverse `  a )
) ) splice  <. ( # `  a ) ,  (
# `  a ) ,  <" b ( M `  b ) "> >. )  =  ( ( a concat  <" b ( M `
 b ) "> ) concat  ( M  o.  (reverse `  a )
) ) )
9172s1cld 11684 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b ">  e. Word  ( I  X.  2o ) )
92 revccat 11726 . . . . . . . . . . . . . . . 16  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( (reverse `  <" b "> ) concat  (reverse `  a ) ) )
9345, 91, 92syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( (reverse `  <" b "> ) concat  (reverse `  a ) ) )
94 revs1 11725 . . . . . . . . . . . . . . . 16  |-  (reverse `  <" b "> )  =  <" b ">
9594oveq1i 6031 . . . . . . . . . . . . . . 15  |-  ( (reverse `  <" b "> ) concat  (reverse `  a
) )  =  (
<" b "> concat  (reverse `  a ) )
9693, 95syl6eq 2436 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (reverse `  ( a concat  <" b "> ) )  =  ( <" b "> concat  (reverse `  a )
) )
9796coeq2d 4976 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  (
a concat  <" b "> ) ) )  =  ( M  o.  ( <" b "> concat  (reverse `  a )
) ) )
9849a1i 11 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  M : ( I  X.  2o ) --> ( I  X.  2o ) )
99 ccatco 11732 . . . . . . . . . . . . . 14  |-  ( (
<" b ">  e. Word  ( I  X.  2o )  /\  (reverse `  a
)  e. Word  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  ( <" b "> concat  (reverse `  a
) ) )  =  ( ( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a ) ) ) )
10091, 47, 98, 99syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  ( <" b "> concat  (reverse `  a
) ) )  =  ( ( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a ) ) ) )
101 s1co 11730 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ( I  X.  2o )  /\  M : ( I  X.  2o ) --> ( I  X.  2o ) )  ->  ( M  o.  <" b "> )  =  <" ( M `  b
) "> )
10272, 49, 101sylancl 644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  <" b "> )  =  <" ( M `  b
) "> )
103102oveq1d 6036 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( M  o.  <" b "> ) concat  ( M  o.  (reverse `  a
) ) )  =  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) )
10497, 100, 1033eqtrd 2424 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M  o.  (reverse `  (
a concat  <" b "> ) ) )  =  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) )
105104oveq2d 6037 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) ) )
106 ccatcl 11671 . . . . . . . . . . . . 13  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o ) )  ->  (
a concat  <" b "> )  e. Word  (
I  X.  2o ) )
10745, 91, 106syl2anc 643 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  <" b "> )  e. Word  (
I  X.  2o ) )
10878s1cld 11684 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" ( M `  b ) ">  e. Word  ( I  X.  2o ) )
109 ccatass 11678 . . . . . . . . . . . 12  |-  ( ( ( a concat  <" b "> )  e. Word  (
I  X.  2o )  /\  <" ( M `
 b ) ">  e. Word  ( I  X.  2o )  /\  ( M  o.  (reverse `  a
) )  e. Word  (
I  X.  2o ) )  ->  ( (
( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a )
) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b
) "> concat  ( M  o.  (reverse `  a
) ) ) ) )
110107, 108, 51, 109syl3anc 1184 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  <" b "> ) concat  ( <" ( M `  b ) "> concat  ( M  o.  (reverse `  a ) ) ) ) )
111 ccatass 11678 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  ( I  X.  2o )  /\  <" b ">  e. Word  ( I  X.  2o )  /\  <" ( M `
 b ) ">  e. Word  ( I  X.  2o ) )  -> 
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  (
<" b "> concat  <" ( M `  b ) "> ) ) )
11245, 91, 108, 111syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  ( <" b "> concat  <" ( M `
 b ) "> ) ) )
113 df-s2 11740 . . . . . . . . . . . . . 14  |-  <" b
( M `  b
) ">  =  ( <" b "> concat  <" ( M `
 b ) "> )
114113oveq2i 6032 . . . . . . . . . . . . 13  |-  ( a concat  <" b ( M `
 b ) "> )  =  ( a concat  ( <" b "> concat  <" ( M `
 b ) "> ) )
115112, 114syl6eqr 2438 . . . . . . . . . . . 12  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  <" ( M `  b ) "> )  =  ( a concat  <" b ( M `  b ) "> ) )
116115oveq1d 6036 . . . . . . . . . . 11  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( a concat  <" b "> ) concat  <" ( M `  b ) "> ) concat  ( M  o.  (reverse `  a ) ) )  =  ( ( a concat  <" b ( M `
 b ) "> ) concat  ( M  o.  (reverse `  a )
) ) )
117105, 110, 1163eqtr2rd 2427 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b
( M `  b
) "> ) concat  ( M  o.  (reverse `  a
) ) )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
11875, 90, 1173eqtrd 2424 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  =  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
1191, 36, 48, 73efgtf 15282 . . . . . . . . . . . 12  |-  ( ( a concat  ( M  o.  (reverse `  a ) ) )  e.  W  -> 
( ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) )  =  ( m  e.  ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) ) ,  u  e.  ( I  X.  2o )  |->  ( ( a concat 
( M  o.  (reverse `  a ) ) ) splice  <. m ,  m , 
<" u ( M `
 u ) "> >. ) )  /\  ( T `  ( a concat 
( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W ) )
120119simprd 450 . . . . . . . . . . 11  |-  ( ( a concat  ( M  o.  (reverse `  a ) ) )  e.  W  -> 
( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W )
121 ffn 5532 . . . . . . . . . . 11  |-  ( ( T `  ( a concat 
( M  o.  (reverse `  a ) ) ) ) : ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) ) --> W  ->  ( T `  ( a concat  ( M  o.  (reverse `  a
) ) ) )  Fn  ( ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  X.  (
I  X.  2o ) ) )
12255, 120, 1213syl 19 . . . . . . . . . 10  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( T `  ( a concat  ( M  o.  (reverse `  a
) ) ) )  Fn  ( ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  X.  (
I  X.  2o ) ) )
123 fnovrn 6161 . . . . . . . . . 10  |-  ( ( ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) )  Fn  ( ( 0 ... ( # `  ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  X.  ( I  X.  2o ) )  /\  ( # `  a
)  e.  ( 0 ... ( # `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) )  /\  b  e.  ( I  X.  2o ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  e. 
ran  ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) ) )
124122, 71, 72, 123syl3anc 1184 . . . . . . . . 9  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( # `  a ) ( T `  (
a concat  ( M  o.  (reverse `  a ) ) ) ) b )  e. 
ran  ( T `  ( a concat  ( M  o.  (reverse `  a ) ) ) ) )
125118, 124eqeltrrd 2463 . . . . . . . 8  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  e.  ran  ( T `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )
1261, 36, 48, 73efgi2 15285 . . . . . . . 8  |-  ( ( ( a concat  ( M  o.  (reverse `  a
) ) )  e.  W  /\  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  e.  ran  ( T `
 ( a concat  ( M  o.  (reverse `  a
) ) ) ) )  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) ) )
12755, 125, 126syl2anc 643 . . . . . . 7  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
a concat  ( M  o.  (reverse `  a ) ) )  .~  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) ) )
12844, 127ersym 6854 . . . . . 6  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  ( a concat  ( M  o.  (reverse `  a
) ) ) )
12944ertr 6857 . . . . . 6  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  ( a concat 
( M  o.  (reverse `  a ) ) )  /\  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) )  ->  ( (
a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
130128, 129mpand 657 . . . . 5  |-  ( ( A  e.  W  /\  ( a  e. Word  (
I  X.  2o )  /\  b  e.  ( I  X.  2o ) ) )  ->  (
( a concat  ( M  o.  (reverse `  a )
) )  .~  (/)  ->  (
( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) )
131130expcom 425 . . . 4  |-  ( ( a  e. Word  ( I  X.  2o )  /\  b  e.  ( I  X.  2o ) )  -> 
( A  e.  W  ->  ( ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) 
->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  (
a concat  <" b "> ) ) ) )  .~  (/) ) ) )
132131a2d 24 . . 3  |-  ( ( a  e. Word  ( I  X.  2o )  /\  b  e.  ( I  X.  2o ) )  -> 
( ( A  e.  W  ->  ( a concat  ( M  o.  (reverse `  a
) ) )  .~  (/) )  ->  ( A  e.  W  ->  ( ( a concat  <" b "> ) concat  ( M  o.  (reverse `  ( a concat  <" b "> ) ) ) )  .~  (/) ) ) )
13314, 20, 26, 32, 43, 132wrdind 11719 . 2  |-  ( A  e. Word  ( I  X.  2o )  ->  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) ) )
1344, 133mpcom 34 1  |-  ( A  e.  W  ->  ( A concat  ( M  o.  (reverse `  A ) ) )  .~  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2900    \ cdif 3261   (/)c0 3572   <.cop 3761   <.cotp 3762   class class class wbr 4154    e. cmpt 4208    _I cid 4435    X. cxp 4817   ran crn 4820    o. ccom 4823    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021    e. cmpt2 6023   1oc1o 6654   2oc2o 6655    Er wer 6839   0cc0 8924    + caddc 8927   NN0cn0 10154   ZZcz 10215   ZZ>=cuz 10421   ...cfz 10976   #chash 11546  Word cword 11645   concat cconcat 11646   <"cs1 11647   splice csplice 11649  reversecreverse 11650   <"cs2 11733   ~FG cefg 15266
This theorem is referenced by:  efginvrel1  15288  frgpinv  15324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-ot 3768  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-ec 6844  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422  df-fz 10977  df-fzo 11067  df-hash 11547  df-word 11651  df-concat 11652  df-s1 11653  df-substr 11654  df-splice 11655  df-reverse 11656  df-s2 11740  df-efg 15269
  Copyright terms: Public domain W3C validator