MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmf Unicode version

Theorem efgmf 15022
Description: The formal inverse operation is an endofunction on the generating set. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
Assertion
Ref Expression
efgmf  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
Distinct variable group:    y, z, I
Allowed substitution hints:    M( y, z)

Proof of Theorem efgmf
StepHypRef Expression
1 2oconcl 6502 . . . 4  |-  ( z  e.  2o  ->  ( 1o  \  z )  e.  2o )
2 opelxpi 4721 . . . 4  |-  ( ( y  e.  I  /\  ( 1o  \  z
)  e.  2o )  ->  <. y ,  ( 1o  \  z )
>.  e.  ( I  X.  2o ) )
31, 2sylan2 460 . . 3  |-  ( ( y  e.  I  /\  z  e.  2o )  -> 
<. y ,  ( 1o 
\  z ) >.  e.  ( I  X.  2o ) )
43rgen2 2639 . 2  |-  A. y  e.  I  A. z  e.  2o  <. y ,  ( 1o  \  z )
>.  e.  ( I  X.  2o )
5 efgmval.m . . 3  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
65fmpt2 6191 . 2  |-  ( A. y  e.  I  A. z  e.  2o  <. y ,  ( 1o  \ 
z ) >.  e.  ( I  X.  2o )  <-> 
M : ( I  X.  2o ) --> ( I  X.  2o ) )
74, 6mpbi 199 1  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   A.wral 2543    \ cdif 3149   <.cop 3643    X. cxp 4687   -->wf 5251    e. cmpt2 5860   1oc1o 6472   2oc2o 6473
This theorem is referenced by:  efgtf  15031  efgtlen  15035  efginvrel2  15036  efginvrel1  15037  efgredleme  15052  efgredlemc  15054  efgcpbllemb  15064  frgp0  15069  frgpinv  15073  vrgpinv  15078  frgpnabllem1  15161
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-1o 6479  df-2o 6480
  Copyright terms: Public domain W3C validator